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Abstract

This thesis discusses the use of the singular value decomposition (SVD) in multiple re-

gression with special reference to the problems of identifying outlying and/or influential

observations, and the explanatory variables that are involved in collinear relationships.

Regression diagnostics are numerous and well-known, however most authors who have

used the singular value decomposition in regression analysis have concentrated on the

matrix of the right singular vectors (that is, the eigenvectors of XTX). In this paper, we

consider also the matrix of the left singular vectors (that is, the eigenvectors of XXT).

We tap into the theory of correspondence analysis to demonstrate how the total variance

in principal components analysis can be broken down along the principal axes, and further

broken down into contributions of the rows and the columns of the data matrix. The alge-

braic expressions derived from decomposing the total variance of X are used extensively

in the thesis to derive measures that aid in the identification of leverage points, and to

identify the variables that are involved in collinear relationships and the thresholds to use

in order to identify the variables that are involved in the collinearity.

The diagonal values of the hat matrix Hx, where Hx = X(XTX)−1XT, are used in re-

gression analysis to identify outlying observations in the explanatory variables that may

alter the fit of the least squares regression line. The diagonal values however, are known

to suffer from the effects of masking and swamping; thus we propose a procedure that

is adapted in part from correspondence analysis, to identify leverage points in a data

set. The procedure entails producing a leverage-distance (L-D) plot, which is useful in

identifying any observations that may be masked or swamped. The procedure is also

extended to the diagonal values of the Hz matrix, the matrix formed when we append

the response vector, y, to the matrix of explanatory variables, X, to identify regression

outliers. We also propose a residual measure, Rj, which provides insight into the role

that each observation plays in determining the displacement of other observations from

the least squares fit. The residuals, either in their raw or transformed form, are known

to be a poor measure of fit since they may fail to identify the outlying observations when

these observations are being accommodated by the least squares fit. Thus, Rj can be

used in conjunction with existing measures that are based on the transformed residuals
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to identify regression outliers.

The regression estimates such as the coefficients, are known to be easily affected by out-

lying observations, and by decomposing the regression coefficients, we illustrate how to

determine the outlying observations that may have a disproportionate effect in the deter-

mination of the individual regression coefficients. An artificial data set and three examples

from regression analysis literature are used to illustrate the procedure for outlying obser-

vations and proposed measures for outliers and influential observations.

A number of approaches have been proposed to identify the explanatory variables that are

involved in collinear relationships, and to detect the coefficients that are most adversely

affected. We propose an alternative measure for identifying variables that are involved in

the collinearity that is based on examining the magnitude of the squared right singular

vectors, which represent the proportion of variance due to an axis that is explained by a

particular variable. We also develop a means of quantifying the meaning of ‘large’ for the

magnitude of the eigenvectors of XXT that correspond to small singular values, and for

the decomposed coefficient values that correspond to small singular values.

Principal components regression is a form of biased estimator that is used when there is

collinearity among the explanatory variables, and we consider an alternative computa-

tional approach to principal components regression using the singular value decomposi-

tion, focusing particularly on employing values of the left singular vectors in expressing

the principal components regression estimates where it is appropriate. We also demon-

strate the usefulness of decomposing the multiple correlation coefficient, R2, to determine

the importance of the axes in explaining the amount of variation in y, and a measure to

determine the range of values in which prediction is reasonable when there is collinearity

in the data is also proposed.
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Chapter 1

Preliminaries

1.1 Notation

We consider the standard linear regression model:

y = Xβ + ε

where the dimensions of the vectors and matrices are n × 1, n × m, m × 1 and n × 1

respectively, with n ≥ m, and possibly including the intercept. We assume that the

columns of X and the vector y have been standardised to have mean zero and variance

one, and that E(ε) = 0 and Cov (ε) = σ2I. In the discussion that follows, we assume that

X does not include the intercept, although the results may be generalised to include the

intercept.

The singular value decomposition (SVD) of the n×m matrix X of explanatory variables,

of rank k, where n ≥ m and therefore k ≤ m is given by:

X = UDαV
T (1.1)

where U is an n×m matrix of left singular vectors (uk’s) of X, or the

eigenvectors of XXT.

V is an m×m matrix of right singular vectors (vk’s) of X, or the

eigenvectors of XTX.

Dα is an m×m diagonal matrix with non-negative singular values (αk) of X,

or the positive square roots of the eigenvalues of either XTX or XXT.

For (1.1), we assume that X is of full column rank, that is, k = m (cf. Belsley, Kuh and

Welsch, 1980, p. 100), and that the singular values are arranged in order of decreasing

magnitude (that is, α1 ≥ α2 ≥ . . . ≥ αk > 0) with their associated singular vectors

arranged according to the order of the singular values.
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The columns of U and V are orthonormal, hence UTU = VTV = Im, but since V is

square and U is rectangular, VVT = Im and UUT 6= In. The columns of U and V are

also the row and column singular vectors of X respectively, since the columns of U form an

orthonormal basis for the space spanned by the columns of X, and the columns of V form

an orthonormal basis for the space spanned by the rows of X. Each uk vector represents

a linear combination of rows of X that tend to occur together in a consistent manner,

hence most of the values of X are projected along the first few vk axes, with the first

singular vector of V, v1, the major principal axis, representing the largest concentration

of the X values (Mandel, 1982).

The SVD has been used in least squares problems (see amongst others Belsley et al.

(1980), Mandel (1982), and Henshall and Smith (1996)) to decompose a matrix into

several component matrices that are simpler geometrically than the original matrix (Green

and Carroll, 1976). However most authors have concentrated on the matrix of the right

singular vectors (that is, the eigenvectors of XTX). In this thesis, we consider also the

matrix of the left singular vectors (that is, the eigenvectors of XXT).

1.1.1 Singular Value Decomposition and Regression Analysis

By substituting X = UDαV
T into y = Xβ+ε, we can easily derive expressions for some

of the quantities commonly estimated in regression using the least squares method:

The regression coefficients (β̂), and variance of β̂:

β̂ = (XTX)−1XTy = VD−1
α UTy

var(β̂) = (XTX)−1σ2 = (VD−2
α VT)σ2

The residuals (ε̂), and variance of ε̂:

ε̂ = y −Xβ̂ = (I−UUT)y

var(ε̂) = var[(I−UUT)y] = (I−UUT)σ2

For any vector of explanatory variables, x0, the predicted values (ŷ0), and variance

of the ŷ0 :
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ŷ0 = β̂Tx0 = xT
0 (XTX)−1x0y = xT

0 (VD−2
α VT)x0y

var(ŷ0) = xT
0 (XTX)−1x0σ

2 = xT
0 (VD−2

α VT)x0σ
2

The model variance:

σ̂2 =
ε̂Tε̂

n−m
=

yT(I−UUT)y

n−m

The hat matrix:

Hx = X(XTX)−1XT = UUT

The notation used above, where boldface uppercase letters such as X are used to denote

matrices; boldface lowercase letters such as x are used to denote vectors; the transpose of

a vector x (or matrix X) is written as xT (or XT); the inverse of a matrix X is written

as X−1, and a hat on a letter such as ε̂ is used to denote the estimate of its parameter

ε, will be employed throughout the thesis. Other notation not mentioned here will be

introduced as the thesis develops.

1.2 Introduction

Regression analysis using the least squares approach is a widely used technique, and re-

gression estimates are known to be easily affected by one or a few unusual observations

and dependencies among the explanatory variables (a problem known as collinearity or

multicollinearity). Unusual observations and collinearities when undetected, can cause

problems in regression analysis, for example, by inflating the variance of the regression

coefficients. This is often revealed when some of the regression assumptions are not satis-

fied (refer to Chatterjee and Hadi (1988)). The measures that have emerged as a result of

trying to diagnose a failure of these assumptions, are commonly referred to as “regression

diagnostics”.

A lot of research has been done in the area of detecting unusual observations (refer to

Barnett and Lewis (1994) for an extensive review of methods used to detect unusual ob-

servations), and most of the measures that have been developed work by measuring the
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change in some parameter when one or more observations are deleted. The deletion statis-

tics based on single observations may suffer from the masking effect, which occurs when

some unusual observations are not detected because of the presence of another adjacent

subset of unusual observations, and the swamping effect, which occurs when ‘good’ obser-

vations are incorrectly identified as unusual because of the presence of another adjacent

subset of unusual observations (Hadi and Simonoff, 1993).

Group deletion statistics are rarely affected by these problems, although as discussed by

Atkinson (1982), Kempthorne and Mendel (1990) and others, the difficulty associated

with these methods is identifying the number of groups and number of observations to be

considered for each group. For a detailed discussion of the methods that have been used

to try and detect multiple outlying observations, refer to Ben-Gal (2005), Wang, Critchley

and Smith (2003), Wisnowski, Montgomery and Simpson (2001) and Chiang (2008) and

the authors cited therein.

Robust techniques are alternative diagnostics that have been developed to offset the ef-

fects of masking and swamping by minimising the impact of unusual observations in the

estimation process (refer to Hadi and Simonoff (1993), Liang and Kvalheim (1996) for a

survey of robust methods).

A lot of research has also been done in the area of understanding collinearities among

the explanatory variables (refer to Belsley et al. (1980), Gunst and Mason (1977), and

Hocking and Pendleton (1983)). Measures that are typically used to detect the presence

of collinear relationships include inter alia: examining the magnitude of the condition in-

dices, variance inflation factors, and the eigenvalues of XTX (Belsley et al., 1980, Hocking

and Pendleton, 1983, Mandel, 1982, Mansfield and Helms, 1982, Stewart, 1987). Estima-

tors such as principal components regression and ridge regression, are typically used to

compensate for the effects of collinearities (Mandel, 1982).

1.3 Objectives to the Research

The purpose of this thesis is to illustrate the advantages of using the singular value decom-

position in multiple regression with special reference to problems of identifying unusual

observations which may influence the regression coefficients and identifying the explana-

tory variables that are involved in collinear relationships. We focus specifically on the

application of the matrix of the left singular vectors where it is appropriate.

The diagonal values of the hat matrix (that is, the hi values) are used in regression anal-

ysis to identify outlying observations in the explanatory variables that may alter the fit
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of the least squares line. The hi values however, are known to suffer from the effects

of masking and swamping, and in this thesis we demonstrate how decomposing a data

matrix using the singular value decomposition technique can aid with the identification

of observations that are being masked and swamped.

The residuals are also often examined to determine the observations that may have influ-

enced the fit of the least squares regression line, because they take the response variable,

y, into account. The residuals, either in their raw or transformed form, are known to

be a poor measure of fit since they may fail to identify the outlying observations when

these observations are being accommodated by the least squares fit. Thus, we propose a

measure that can be used in conjunction with the transformed residuals. The measure,

which is based on the off-diagonal values of the hat (Hx) matrix, defined in Section 1.1.1,

determines the role that each observation plays in the displacement of other observations

from the least squares fitted line.

The regression estimates such as the coefficients, are known to be easily affected by

outlying observations, and measures such as DFBETAS (Belsley et al., 1980), which are

intended to measure the impact of an observation on the individual regression coefficients,

are prone to the same problems as are the residuals and the diagonal values of the hat

matrix since they are a function of the residuals, which are a poor measure of fit, and

the diagonal values of the hat matrix, which may suffer from the masking and swamping

effects. By decomposing the regression coefficients, we illustrate how to determine the

outlying observations that may have a disproportionate effect in the determination of the

individual regression coefficients.

A number of approaches have been proposed to identify the explanatory variables that are

involved in collinear relationships, and to detect the coefficients that are most adversely

affected. There are no thresholds to establish what a ‘large’ value is for the existing mea-

sures, and in this thesis we also develop a means of quantifying the meaning of ‘large’ for

the magnitude of the eigenvectors of XTX that correspond to small singular values, and

for the coefficient values that correspond to small singular values.

The last objective is to illustrate an alternative computational approach to principal com-

ponents regression that is based on the SVD. Principal components regression is a form of

biased estimator that is used when there is collinearity among the explanatory variables.

Often only a subset of the principal axes are retained in the estimation of regression

quantities, which may result in a decrease of the model’s variance and/or decrease in the

explanatory power of the model, and this may increase the bias of the regression quanti-

ties. We focus our attention particularly on employing values of the left singular vectors

in expressing the principal components regression estimates where it is appropriate, and
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to demonstrate the usefulness of decomposing the multiple correlation coefficient, R2, to

determine the importance of the axes in explaining the amount of variation in y. We also

propose a measure to determine the range of values for which prediction is reasonable

when there is collinearity in the data.

Thus we consider two main areas of regression diagnostics. In the first part, we are

concerned with the identification of outlying observations and determining which of the

outlying observations influence the regression coefficients, and in the second part, we

motivate for thresholds that may be used to identify the explanatory variables that are

involved in collinear relationships, and regression coefficients that are most affected by

the near dependencies.

1.4 Limitations

In this thesis, we focus only in the ways in which unusual data and the explanatory vari-

ables that are involved in collinear relationships can be detected, and identifying which

of the unusual data and explanatory variables that are involved in collinear relationships

have a disproportionate effect on the estimated regression coefficients. Thus, the extent

to which the unusual data affects the regression coefficients is not assessed, and the reme-

dial action that should be taken once influential observations have been identified is not

considered. We also have not considered robust alternatives of the proposed measures.

1.5 Organization of the Thesis

The thesis is divided into eight chapters and three appendices. In the next chapter, we

present the mathematical theory underlying the measures that are being introduced in

the thesis. A procedure that aids with the identification of unusual observations in X is

presented and exemplified in Chapter 3. In Chapter 4, we extend the procedure that is

proposed in Chapter 3 to include the response variable, and also propose a measure which

determines the role that each observation plays in the displacement of other observations

from the least squares fitted line. The proposed measure should be used in conjunction

with the Studentized residuals (or other transformed residuals) to identify outlying obser-

vations when we take the response variable into account. Chapter 5 then considers which

of the outlying observations have a disproportionate effect on the regression coefficients.

We make use of an artificial data set and three real data sets that have appeared in the

literature on regression diagnostics in Chapters 3 to 5, to illustrate how the proposed

measures operate.
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In Chapter 6, we propose an alternative measure that may be used to identify the ex-

planatory variables that are involved in collinear relationships, and thresholds for existing

methods that are used for detecting the explanatory variables that are involved in collinear

relationships are motivated and exemplified. We then illustrate the computational theory

of principal components regression, focusing particularly on expressing the principal com-

ponents regression estimates using the left singular vectors in Chapter 7, and conclude

with a brief summary of the main contributions of this thesis in the final chapter.
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Chapter 2

Graphical Display and Decomposition of the

Principal Axes of X

In correspondence analysis (Greenacre, 1984), the key quantity known as inertia is a generalisa-
tion of the variance. Benzécri (1992) demonstrated how the inertia may be broken down along
the principal axes, and further broken down into contributions of the rows and the columns of
the data matrix. The same decomposition of the inertia can be applied to the total variance in
principal components analysis (Greenacre, 1984). In this chapter, we apply the decomposition
to an n ×m data matrix (X) with numeric data using the singular value decomposition of X,
to illustrate how the total variance of a matrix can be decomposed in numerous ways, that lead
to an assortment of contributions towards the total variance of X. The theory and notation
introduced in this chapter will be used extensively in some of the chapters that follow.
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2.1 Introduction

In correspondence analysis (Greenacre, 1984), the key quantity known as inertia is a

generalisation of the variance. Benzécri (1992) demonstrated how the inertia may be

broken down along the principal axes, and further broken down into contributions of the

rows and the columns of a data matrix. The same decomposition of the inertia can be

applied to the total variance in principal components analysis (Greenacre, 1984). In this

chapter, we apply the same decomposition of the total variance to an n×m data matrix

(X) with numeric data using the singular value decomposition of X, to illustrate how

the total variance of the matrix can be decomposed in numerous ways, that lead to an

assortment of contributions towards the total variance of X.

This chapter is organised as follows. In the next section, we introduce the notation for

plotting each of the rows (that is, the observations) and columns (that is, the variables)

of X, and some properties of the resulting graphical display. In section 2.3, we illustrate

how to decompose the total variance of X into contributions from the observations and

variables, and then further into contributions of the observations (or variables) to the axes

and contributions of the axes to the observations (or variables).

2.2 Notation

Let X = UDαV
T be the SVD of the standardised matrix X1. Put

F = UDα and G = VDα

The rows of F : n×m and of G : m×m provide coordinates for plotting each row of X

(that is, each observation) and each column of X (that is, each variable) respectively on

a new set of orthogonal axes, although the graphical display formed in this way is not a

biplot (Gabriel, 1971), since FGT 6= X.

In consequence of the SVD,

XV = UDα = F

so that

XGD−1
α = F and G = XTFD−1

α (2.1)

These two results, (2.1), are known as the transition formulae, since the coordinates of the

observations can be obtained from the coordinates of the variables, and conversely. The

transition formulae provide a justification for simultaneously plotting the observations

1Throughout the thesis, we assume the matrix X to be standardised, unless otherwise stated.
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and variables on the same set of axes (see Greenacre (1984) for further details in the

context of correspondence analysis).

2.2.1 Properties of the Graphical Display

The properties of the above graphical display of F and G are (refer to Green and Carroll

(1976) and Ludovic, Morineau and Warwick (1984) for algebraic details):

1. The distances between pairs of row points in the display (that is, the observations)

are Euclidean:

‖ fi− fi′ ‖2= (xi− xi′)
T(xi− xi′), where fi is the ith row of F, and xi is the ith row

of X.

2. The Euclidean distance of the ith observation from the origin, ‖ fi ‖2= (xT
i xi) is

the contribution of row i to the total variance. Thus if observation i is plotted far

from the origin, it has, for one or more variables, coordinates that are far from the

mean of that variable (or of those variables).

3. The distances between pairs of column points in the display (that is, the variables)

are Euclidean:

‖ gj − gj′ ‖2= (xj − xj′)
T(xj − xj′), where gj is the jth row of G, and xj is the jth

column of X.

4. The Euclidean distance of the jth column point from the origin is proportional to

the standard deviation of the jth variable, that is, ‖ gj ‖2= (xT
j xj) = (n − 1)s2

j .

But since X is standardised, the column points lie on a hypersphere.

5. The cosine of the angle between the vectors gj and gj′ in the graphical display is

the correlation between variables j and j′:

rjj′ =
gT
j gj′

‖ gj ‖‖ gj′ ‖
= cos θjj′

Thus variables that are highly correlated are either located close to one another

(cos θjj′ ≈ 1 when rjj′ ≈ 1), or far away from one another (cos θjj′ ≈ −1 when rjj′ ≈
−1); whilst orthogonal (uncorrelated) variables are located a moderate distance

from one another (cos θjj′ ≈ 0 when rjj′ ≈ 0).
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2.3 Decomposition of the Variance of X

To illustrate how to decompose the variance of X, we first observe the following equalities

of the norm of X:

‖ X ‖2=
n∑
i=1

m∑
j=1

x2
ij = tr(XTX)

=
m∑
k=1

α2
k

= (n− 1)
m∑
j=1

s2
j

where αk is the kth singular value, and
m∑
j=1

s2
j is the total variance of X.

We also note that

FFT = UDαDαU
T = UDαV

TVDαU
T = XXT and

GGT = VDαDαV
T = VDαU

TUDαV
T = XTX

So
tr(FFT) = tr(GGT) =‖ X ‖2

= (n− 1)
m∑
j=1

s2
j

We thus have two ways of decomposing the total variance of X: F allows us to decompose

the total variance of X in terms of the contributions of the observations, and G allows us

to decompose the total variance of X in terms of the contributions of the variables.

The total variance of X may be decomposed further along the principal axes for each of

the observations and variables (refer to Table 2.1):
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Table 2.1
Decomposition of the variance. Source: Greenacre (1984)

axes

1 2 · · · m Total

observations

1 f2
11 f2

12 · · · f2
1k

∑m
k=1 f

2
1k

2 f2
21 f2

22 · · · f2
2k

∑m
k=1 f

2
2k

...
...

... · · ·
...

...

n f2
n1 f2

n2 · · · f2
nk

∑m
k=1 f

2
nk

Total α2
1 α2

2 · · · α2
m

∑m
k=1 α

2
k

variables

1 g2
11 g2

12 · · · g2
1k

∑m
k=1 g

2
1k

2 g2
21 g2

22 · · · g2
2k

∑m
k=1 g

2
2k

...
...

... · · ·
...

...

m g2
m1 g2

m2 · · · g2
mk

∑m
k=1 g

2
mk

For the observations:

Total variance =
1

n− 1
tr(FFT)

=
1

n− 1

n∑
i=1

[ m∑
k=1

f 2
ik

]
=

1

n− 1

m∑
k=1

[ n∑
i=1

f 2
ik

]

where
m∑
k=1

f 2
ik is the contribution of observation i to the total variance, and

n∑
i=1

f 2
ik is the contribution of the kth principal axis to the total variance.

Similarly, for the variables:

Total variance =
1

n− 1
tr(GGT)

=
1

n− 1

m∑
j=1

[ m∑
k=1

g2
ik

]

=
1

n− 1

m∑
k=1

[ m∑
j=1

g2
ik

]
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where
m∑
k=1

g2
jk is the contribution of variable j to the total variance, and

m∑
j=1

g2
jk is the contribution of the kth principal axis to the total variance.

Below, we illustrate how the various decompositions of the total variance of X may be

decomposed further, and it is the results generated here that will be used extensively in

some of the chapters that follow.

2.3.1 Contributions of Observations or Variables to Axes

The quantity
n∑
i=1

f 2
ik, may be decomposed further into contributions of each observation

to the variance of the kth principal axis. Thus

f 2
ik

n∑
i=1

f 2
ik

for all i = 1, 2, . . . , n

is interpreted as the proportion of the variance due to the kth principal axis that is

explained by the ith observation.

Notice that

f 2
ik

n∑
i=1

f 2
ik

= u2
ik for all i = 1, 2, . . . , n

where uik is the value of the ith row and kth column of matrix U of the SVD of X.

Therefore the squared values of matrix U, that is the u2
ik’s, indicate the proportion of the

variance due to the kth principal axis that is explained by the ith observation.

m∑
j=1

g2
jk may also be decomposed further into contributions of each variable to the variance

of the kth principal axis. Thus

g2
jk

m∑
j=1

g2
jk

for all j = 1, 2, . . . ,m
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is interpreted as the proportion of the variance due to the kth principal axis that is

explained by variable j. Notice too that since
m∑
j=1

g2
jk = α2

k,

g2
jk

m∑
j=1

g2
jk

= v2
jk

Therefore the squared values of matrix V, that is the v2
jk’s, indicate the proportion of the

variance due to the kth principal axis that is explained by the jth variable.

These contributions (of observations or variables to the axes), measure the importance of

each point (observation or variable) in determining the direction of each axis. Thus large

values imply that a point pulls or alters the direction of the axis away from where the

majority of the other points are located.

2.3.2 Contributions of Axes to Observations or Variables

The same decomposition may be applied to the contributions of the axes to observation

i or variable j.

Thus the quantity
m∑
k=1

f 2
ik may be decomposed further into contributions of each of the m

principal axes to the variance contributed by observation i. That is,

f 2
ik

m∑
k=1

f 2
ik

for all k = 1, 2, . . . ,m

is interpreted as the proportion of the variance due to observation i that is explained by

the kth principal axis.

Similarly,
m∑
k=1

g2
jk may be decomposed further into contributions of each of the m principal

axes to the variance contributed by variable j. Thus

g2
jk

m∑
k=1

g2
jk

for all k = 1, 2, . . . ,m

is interpreted as the proportion of the variance due to variable j that is explained by the

2-7



Graphical Display and Decomposition of the Principal Axes of X

kth principal axis.

We observe that the contributions of the axes to an observation or variable are the squared

cosines of the angles that the kth principal axis makes with the ith observation or the

jth variable (refer to Figure 2.1). Large values of the squared cosine correspond to a

small angle between the observation (or variable) and the axis, which indicates that the

observation or variable lies in the direction of the axis or is highly correlated with the

axis.

Notice too from the figure that cos2 θ(kk′) =
g2
jk + g2

jk′

m∑
k=1

g2
jk

is the squared cosine of the angle between the plane defined by the kth and the k′th prin-

cipal axes and variable j. Clearly this result can be extended to the hyperplane defined

by any p(≤ m) principal axes.

θk

g2
jk′

jth variable
(in m-space)

k′th axis

g2
jk

kth axis

m∑
k=

1

g
2
jk

θ(k,k
′ )

Figure 2.1: Illustration of squared cosine angle of the kth axis with the jth variable

2-8



Graphical Display and Decomposition of the Principal Axes of X

2.4 Summary

In this chapter, we presented algebraic expressions of the decomposition of the total vari-

ance of X based on the singular value decomposition. We illustrated how the total variance

of a data matrix, X, that contains numeric data may be decomposed into contributions

of the rows and columns X, and further into contributions of the points (observations or

variables) to the axes and contributions of the axes to the points. In some of the fol-

lowing chapters, we apply the various contributions of the total variance of X to propose

measures that may be used in least squares regression to:

• aid with the identification of outlying observations in the explanatory variables.

• identify the explanatory variables that are involved in collinear relationships, and

motivate for thresholds for existing methods that are used for detecting the explana-

tory variables that are involved collinear relationships.

In the next chapter, we consider the use of the diagonal values of the hat matrix (that is,

the hi values) in identifying unusual observations in X.
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Chapter 3

Identifying Outlying Observations in X

Observations play an important role in determining the least squares line, and the regression
quantities such as the coefficients, are known to be easily influenced by outlying observations.
In this chapter, we consider a procedure to identify outlying observations in the explanatory
variables (that is, based on the X matrix), using the diagonal values of the hat matrix (that is,
the hi values). The hi values are known not to identify all leverage points correctly when there
are multiple outliers in a data set, due to the effects of masking and swamping.

The procedure that we consider is adapted from a technique that is used in correspondence
analysis to identify outlying points. We use the decompositions presented in Chapter 2, to
identify the axis that an observation is outlying on. The advantage with this approach is
that we are able to determine the type of outlier in the data, that is, whether the observation
inflates variances because it is located in the first few axes, or whether the observation differs
in multivariate structure because it is located in the last few axes or because the observation is
not explained well by any axis. The masking and swamping effects that the hi values are known
to suffer from are minimized by examining the leverage-distance (L-D) plot.

An artificial data set, with various observations modified to be outliers, and three examples
that have appeared in the literature on regression diagnostics are used to illustrate the proposed
procedure.
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3.1 Introduction

Observations play an important role in determining the least squares line, and the re-

gression quantities such as the coefficients (refer to section 1.1, Chapter 1) are known to

be easily affected by outlying observations. An observation is said to be an outlier if it

appears to deviate markedly from the bulk of the data (Barnett and Lewis, 1994).

In this chapter, we make use of the matrix of left singular vectors U (that is, the eigen-

vectors of XXT), and consider a procedure for identifying outlying observations in the

explanatory variables, the so-called leverage points, that could potentially alter the fit

of the least squares regression line away from the direction of the majority of the ob-

servations. The proposed procedure is based on the diagonal (hi) values of the hat (Hx)

matrix to identify the leverage points, and is an adaptation of a technique used to identify

outliers in correspondence analysis.

In correspondence analysis, points that are outlying tend to dominate the interpretation

of one or more of the axes. Bendixen (1996) defines outlying points in correspondence

analysis as those points that contribute highly to an axis, are well explained by the axis

(that is, a point with high absolute and relative contributions on a particular axis), and

are also located far away from the centre of the plot, whilst Hoffman and Franke (1986)

suggest considering a point with a large absolute contribution and a large principal coor-

dinate on a major principal axis to be an outlier.

The hi values are known to sometimes suffer from the effects of masking and swamping

when there are multiple outliers in a data set. Masking occurs when some outlying ob-

servations are not detected because of the presence of another adjacent subset of outlying

observations, or because the subset of outlying observations mask themselves. The hi

values of the masked observations are small because the sample mean and variance are

skewed towards the masked observations, which results in the distance of the masked

observations from the mean being small. Swamping occurs when ‘good’ observations are

incorrectly identified as outlying because of the presence of another subset of outlying

observations. The hi values of the swamped observations are large because the sample

mean and variance are skewed away from the swamped observations, which results in the

distance of the swamped observations from the mean being large (Coleman, 1977, Hadi

and Simonoff, 1993), and (Acuna and Rodriguez, 2004, cited in Ben-Gal, 2005).

In order to off-set the masking and swamping effects, we propose first identifying the axis

that explains each observation well, and then using a simple graphical display that is

based on the diagonal values of the hat matrix and the distance of the observations from

the origin. This graphical display, which we have called a ‘leverage-distance’ or just ‘L-D’
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plot, will aid in revealing not only the true leverage points, but also those observations

that are being masked (hi value small, but observation located far from the origin) and

swamped (hi value large, but observation located close to the origin).

This chapter is organised as follows. In the next section, we briefly review the use of the

diagonal values of the hat matrix in identifying outlying observations, using an artificial

data set to illustrate some of the problems often encountered when using the hi values

to diagnose outlying observations in the explanatory variables. We then consider an al-

ternative way of expressing the diagonal values of the hat matrix that is based on the

decompositions presented in Chapter 2, and also describe how the decomposed hi values

can be adapted to a technique used in correspondence analysis to identify outlying points

in section 3.3. A procedure to identify leverage points is proposed in section 3.4, and an

artificial data set is used to illustrate the various steps of the procedure.

The proposed procedure is then applied to three real data sets that have appeared in

the literature on regression diagnostics in section 3.5, and we then end the chapter by

discussing and highlighting the importance of the findings of the results presented in the

chapter.

3.2 The Diagonal Values of the Hat Matrix

The hat matrix, Hx = X(XTX)
−1

XT = UUT (Hoaglin and Welsch, 1978, Welsch and

Kuh, 1977), is a symmetric and idempotent matrix, which determines the predicted values

by putting a ‘hat’ on y (that is, ŷ = Hxy). The values of hi, the diagonal values of the

hat matrix, indicate the influence of yi on the fitted value ŷi, and are used to identify

outlying observations among the explanatory variables.

The magnitude of each hi (0 ≤ hi ≤ 1) is used to indicate whether an observation is

outlying or not; with a small (large) value indicating that the observation lies close to

(far from) the majority of the other observations, taking the correlation structure of the

explanatory variables into account. As discussed in Hoaglin and Kempthorne (1986),

there are various guidelines that are used to label an observation as having ‘high lever-

age’. hi values greater than 2m/n have been proposed by Hoaglin and Welsch (1978);

Velleman and Welsh (1981) in addition, suggested labelling observations with hi values

greater than 3m/n when m > 6 and n−m > 12, and Huber (1981, cited in Hoaglin and

Kempthorne, 1986, Velleman and Welsh, 1981) proposed examining observations with hi

values greater than 0.2. Hoaglin and Welsch (1978), and Hoaglin and Kempthorne (1986)

further suggested a stem-and-leaf display of the hi values to identify observations with
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large hi values, taking into account the various guidelines.

We illustrate the use of the diagonal values of the hat matrix with an artificial data set

that is made up of two explanatory variables and twenty observations. Figure 3.1 illus-

trates various scatter plots of the artificial data set, and the stem-and-leaf displays of

the corresponding hi values are shown alongside the plots. In Figure 3.1(a), there are no

leverage points, and in Figures 3.1(b) and 3.1(c), the positions of some observations have

been modified, and the leverage points are indicated by black squares.

The hi values can effectively identify individual outlying observations, but when a data set

has multiple leverage points, the hi values are known to sometimes fail to reveal outlying

observations due to effects of masking and swamping.

Figure 3.2 illustrates more scatter plots of the artificial data set, and the stem-and-leaf

displays of the corresponding hi values are shown alongside the plots. In Figure 3.2(a),

there are multiple leverage points indicated by black squares, although the leverage points

are neither masked nor swamped. Figure 3.2(b) illustrates the masking effect. Observa-

tion 20 is outlying, but its hi value is similar to those of other non-outlying observations

in the sample. The observation is being masked by the presence of observations 18 and 19

that are close to it. In contrast, Figure 3.2(c) illustrates the swamping effect. Observation

13 is not outlying, although its hi value is large relative to all other non-outlying obser-

vations in the sample. The observation is being swamped by the presence of observations

15 and 19 that are far from it.
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Figure 3.1: Scatter plots of two explanatory variables and the stem-and-leaf displays of the corre-
sponding hi values: Outliers are indicated by black square boxes.
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Figure 3.2: Scatter plots of two explanatory variables and the stem-and-leaf displays of the corre-
sponding hi values: Illustration of the effect of multiple outliers.
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3.3 Decomposing the Diagonal Values of the Hat Matrix

In Chapter 2, section 2.3, we saw how the squared values of matrix U, that is, the u2
ik’s,

indicate the proportion of the variance due to the kth principal axis that is explained by

the ith observation, that is,

f 2
ik

n∑
i=1

f 2
ik

= u2
ik for all i = 1, 2, . . . , n

Note that

m∑
k=1

u2
ik = hi (3.1)

where hi is the ith diagonal value of the hat matrix. Thus each hi value represents the

sum of the contributions of variance of each axis that is explained by an observation.

Recall that in correspondence analysis, points that are outlying contribute highly to the

major axis, are well explained by the axis, and are also located far away from the centre

of the plot. We adapt this technique that is used in correspondence analysis to identify

outlying points and define a leverage point that is located in the direction of any kth

axis, and not just the major axis. This is because when an axis is associated with a small

singular value, the projection of the observations on that particular axis covers a smaller

range than on an axis with a large singular value (refer to Mandel (1982)), and for the

least squares fit, observations that are outlying on the minor axes could have a profound

effect on the fit of the least squares regression line.

Due to the potential effects of masking and swamping, we start by defining an observation

with a large hi value to be outlying on a particular axis if it has a large value of

f 2
ik

n∑
i=1

f 2
ik

= u2
ik ≡ rl and

f 2
ik

m∑
k=1

f 2
ik

≡ cl

for some value k.

A large value of cl implies that the ith observation is explained almost entirely by the kth

principal axis, since the angle the observation makes with the axis is small. If this value
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is less than 0.5, then the angle the observation makes with the axis is greater than 45 ◦.

Therefore we will consider any cl value that is greater than 0.5 to be ‘large’.

A large value of rl, implies that the kth axis is, to a large extent, determined by (or

dominated by) the ith observation. If an axis is determined equally by all the observa-

tions, then rl will average 1/n, therefore values greater than 2/n will be used to identify

observations that dominate a particular axis.

Note that since a large value of rl implies a large value of cl, but the reverse is not true

(Greenacre, 1984), and from (3.1), it is possible for an observation to have a large hi

value because the observation determines the direction of multiple axes, but may not be

explained well by any of the axes. This type of observation is a leverage point that differs

in structure from the bulk of data in the sample.

Notice also that the rl values may also be masked when an observation is being masked,

thus the proposed cut-off value of 2/n may not apply, although the masked observation

should dominate the kth axis.

We illustrate in the next section how the three statistics together, that is hi, rl and cl, can

be used to provide a means of identifying leverage points in a data set where the effects

of masking and swamping are minimised.

3.4 Procedure to Identify Leverage Points

The proposed procedure to identify leverage points, which we will illustrate by working

through the artificial data from Figures 3.1(c) (p. 3-5), 3.2(a), 3.2(b) and 3.2(c) (p. 3-6),

proceeds as follows (Note that in the explanation that follows, we will refer to the data

from Figures 3.1(c), 3.2(a), 3.2(b) and 3.2(c) as DATA1, DATA2, DATA3 and DATA4

respectively. All computations on the data were performed in R (R Development Core

Team, 2008), and the source codes written for the measures are included in Appendix C,

section C.1 (p. C-1)):

1. Compute the rl, cl and hi values.

The values of hi, rl and cl for DATA1 to DATA4 are shown in Figures 3.3(b) to

3.6(b). Also shown are the scatter plots of the data, produced using the row coor-

dinates (F matrix) on an alternative set of orthogonal axes.
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Figure 3.3: DATA1 - (a) Scatter plot of data from Figure 3.1(c) in the alternative orthogonal coor-
dinate system. (b) Values of hi, rl, cl and DIST for data from Figure 3.1(c).
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(a)

rl cl
Axis 1 Axis 2 Axis 1 Axis 2

hi (68.17%) (31.83%) (68.17%) (31.83%) DIST
1 0.075 0.074 0.001 0.994 0.006 0.101
2 0.103 0.089 0.014 0.930 0.070 0.131
3 0.303∗ 0.000 0.303∗ 0.000 1.000∗ 0.193
4 0.116 0.111 0.005 0.980 0.020 0.155
5 0.114 0.113 0.001 0.998 0.002 0.155
6 0.075 0.000 0.075 0.000 1.000 0.048
7 0.002 0.000 0.002 0.365 0.635 0.002
8 0.036 0.027 0.009 0.869 0.131 0.042
9 0.070 0.017 0.053 0.411 0.589 0.057
10 0.086 0.027 0.059 0.490 0.510 0.074
11 0.089 0.050 0.039 0.733 0.267 0.093
12 0.009 0.007 0.002 0.880 0.120 0.011
13 0.106 0.066 0.040 0.780 0.220 0.115
14 0.263∗ 0.000 0.263∗ 0.001 0.999∗ 0.167
15 0.115 0.113 0.002 0.992 0.008 0.155
16 0.066 0.005 0.061 0.162 0.838 0.046
17 0.055 0.055 0.000 0.996 0.004 0.075
18 0.103 0.091 0.012 0.944 0.056 0.132
19 0.125 0.118 0.007 0.975 0.025 0.166
20 0.088 0.035 0.053 0.585 0.415 0.082
∗ hi large, rl > 0.1 and cl > 0.5.

(b)

3-9



Identifying Outlying Observations in X

Figure 3.4: DATA2 - (a) Scatter plot of data from Figure 3.2(a) in the alternative orthogonal coor-
dinate system. (b) Values of hi, rl, cl and DIST for data from Figure 3.2(a).
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(a)

rl cl
Axis 1 Axis 2 Axis 1 Axis 2

hi (74.14%) (25.86%) (74.14%) (25.86%) DIST
1 0.056 0.055 0.001 0.995 0.005 0.082
2 0.076 0.063 0.013 0.934 0.066 0.100
3 0.099 0.023 0.076 0.469 0.531 0.074
4 0.084 0.081 0.003 0.986 0.014 0.122
5 0.084 0.084 0.000 0.999 0.001 0.125
6 0.102 0.000 0.102 0.007 0.993 0.053
7 0.001 0.001 0.000 0.982 0.018 0.001
8 0.031 0.019 0.012 0.817 0.183 0.035
9 0.105 0.015 0.090 0.322 0.678 0.068
10 0.074 0.026 0.048 0.612 0.388 0.064
11 0.079 0.045 0.034 0.787 0.213 0.084
12 0.017 0.005 0.012 0.530 0.470 0.013
13 0.136 0.051 0.085 0.632 0.368 0.119
14 0.205∗ 0.001 0.204∗ 0.019 0.981∗ 0.108
15 0.103 0.079 0.024 0.905 0.095 0.130
16 0.195∗ 0.015 0.180∗ 0.195 0.805∗ 0.116
17 0.041 0.036 0.005 0.954 0.046 0.057
18 0.226∗ 0.174∗ 0.052 0.905∗ 0.095 0.285
19 0.245∗ 0.207∗ 0.038 0.940∗ 0.060 0.327
20 0.039 0.018 0.021 0.720 0.280 0.038
∗ hi large, rl > 0.1 and cl > 0.5.

(b)

3-10



Identifying Outlying Observations in X

Figure 3.5: DATA3 - (a) Scatter plot of data from Figure 3.2(b) in the alternative orthogonal coor-
dinate system. (b) Values of hi, rl, cl and DIST for data from Figure 3.2(b).
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(a)

rl cl
Axis 1 Axis 2 Axis 1 Axis 2

hi (85.80%) (14.20%) 2 (85.80%) (14.20%) DIST
1 0.053 0.052 0.001 0.997 0.003 0.089
2 0.063 0.058 0.005 0.985 0.015 0.100
3 0.103 0.023 0.080 0.637 0.363 0.063
4 0.073 0.073 0.000 1.000 0.000 0.125
5 0.079 0.076 0.003 0.993 0.007 0.131
6 0.124 0.000 0.124 0.003 0.997 0.035
7 0.004 0.003 0.001 0.916 0.084 0.005
8 0.027 0.021 0.006 0.951 0.049 0.037
9 0.122 0.007 0.115 0.264 0.736 0.044
10 0.139 0.030 0.109 0.621 0.379 0.082
11 0.131 0.045 0.086 0.760 0.240 0.102
12 0.011 0.001 0.010 0.399 0.601 0.005
13 0.144 0.029 0.115 0.605 0.395 0.083
14 0.019 0.000 0.019 0.003 0.997 0.005
15 0.077 0.046 0.031 0.901 0.099 0.088
16 0.106 0.012 0.094 0.426 0.574 0.047
17 0.023 0.019 0.004 0.966 0.034 0.033
18 0.320∗ 0.142∗ 0.178 0.829∗ 0.171 0.294
19 0.230∗ 0.224∗ 0.006 0.996∗ 0.004 0.386
20 0.153 0.141 0.012 0.986 0.014 0.246
∗ hi large, rl > 0.1 and cl > 0.5.

(b)
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Figure 3.6: DATA4 - (a) Scatter plot of data from Figure 3.2(c) in the alternative orthogonal coor-
dinate system. (b) Values of hi, rl, cl and DIST for data from Figure 3.2(c).
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(a)

rl cl
Axis 1 Axis 2 Axis 1 Axis 2

hi (86.42%) (13.58%) (86.42%) (13.58%) DIST
1 0.060 0.058 0.002 0.994 0.006 0.100
2 0.069 0.064 0.005 0.989 0.011 0.111
3 0.111 0.022 0.089 0.609 0.391 0.062
4 0.082 0.082 0.000 1.000 0.000 0.142
5 0.093 0.086 0.007 0.988 0.012 0.150
6 0.161 0.000 0.161 0.002 0.998 0.044
7 0.004 0.002 0.002 0.848 0.152 0.004
8 0.028 0.021 0.007 0.952 0.048 0.039
9 0.164 0.012 0.152 0.327 0.673 0.062
10 0.121 0.023 0.098 0.599 0.401 0.066
11 0.133 0.043 0.090 0.752 0.248 0.098
12 0.016 0.003 0.013 0.555 0.445 0.008
13 0.199∗∗ 0.042 0.157 0.633 0.367 0.116
14 0.025 0.000 0.025 0.017 0.983 0.007
15 0.221∗ 0.194∗ 0.027 0.979∗ 0.021 0.342
16 0.041 0.002 0.039 0.260 0.740 0.014
17 0.033 0.027 0.006 0.965 0.035 0.049
18 0.044 0.044 0.000 0.999 0.001 0.077
19 0.331∗ 0.265∗ 0.066 0.962∗ 0.038 0.476
20 0.065 0.011 0.054 0.562 0.438 0.034
∗ hi large, rl > 0.1 and cl > 0.5 on the kth axis.
∗∗ hi large, but rl < 0.1 and cl > 0.5 (or the reverse) on the kth axis.

(b)
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2. Identify observations with large hi values using a stem-and-leaf display, and deter-

mine the direction that each observation is located on.

The stem-and-leaf displays for DATA1 to DATA4 are shown in pages 3-5 and 3-6.

In order to determine the direction of the axis that each observation is located on

(or the axis that best explains each observation), we examine the values of cl, since

a large value of cl implies that the angle between the observation and the axis is

small, hence the observation is situated in the direction of that axis.

In DATA1, observations 3 and 14 are outlying because they have large hi values.

Both leverage points determine the direction of and are well explained by (or lie in

the direction of) the second axis. In DATA2, four observations are outlying, and

they also have large hi values. Observations 14 and 16 determine the direction of

and lie in the direction of the second axis, whilst observations 18 and 19 determine

the direction of and lie in the direction of the first axis. In DATA3 two observations,

18 and 19, have large hi values. Both observations determine the direction of and

are well explained by the first axis. In DATA4 three observations, 13, 15 and 19,

have large hi values. Observations 15 and 19 determine the direction of and lie in

the direction of the first axis, whilst observation 13 appears to be responsible for

determining the direction of the second axis, although it lies in the direction of the

first axis. The axis that best explains each of the remaining observations for each

data set can be seen by examining the cl values.

Note that examining the tables containing values of rl and cl not only enable us to

see the axes that observations are outlying on, but also point towards the type of

outliers in the data. As discussed in Gnanadesikan and Kettenring (1972), Hawkins

and Fatti (1984), and Jolliffe (2002), the outlying observations that correspond to

the first few axes are those that are “generally larger (or smaller) in overall size”

compared to the rest of the observations, thus the observations inflate variances and

covariances or correlations, since the first few axes explain most of the variation in

X, whilst the outlying observations that correspond to the last few axes are those

whose multivariate structure differs from the rest of the population. An alternative

to identifying observations with large hi values whose multivariate structure differs

from the rest of the data in the sample is to examine the cl values. These observa-

tions tend to be weakly correlated with all the axes (that is, cl < 0.5 across all axes).

3. Compute the distance of each observation from the origin.

In Chapter 2, section 2.2, we defined the distance of an observation from the origin
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(‖ fT
i ‖2) to be equivalent to the contribution the observation makes to the total

variance.

The last column (“DIST”) of the tables in pages 3-9 to 3-12 shows the distance of

each observation from the origin for each data set.

4. Identify observations that are located far from the origin.

To aid with the identification of observations that are located far from the origin,

we propose plotting a simple graphical display that is based on the diagonal val-

ues of the hat matrix and the distance of the observations from the origin. The

graphical display, which we term the ‘leverage-distance’ or ‘L-D’ plot, is a plot of

all observations with the hi values plotted on the y-axis and the distance from the

origin (‖ fT
i ‖2) plotted on the x-axis, and recommend the use of different symbols

for observations that are located in the direction of different axes. When n is large

or when there is a concentration of scatter points from different axes around the

same area, separate L-D plots for observations located on each axis may be easier

to interpret.

An advantage of the L-D plot is that it will aid not only in identifying the ‘true’

leverage points (where hi and ‖ fi ‖2 are both large), but depending on the extent of

deviation of an observation from the majority of data, the L-D plot will also aid in

identifying observations that are being masked (hi small but ‖ fi ‖2 large), as well

as those observations that are being swamped (hi large but ‖ fi ‖2 small).

The L-D plots of DATA1 to DATA4 are shown in Figures 3.7 to 3.10. The lever-

age points of DATA1 and DATA2 can be seen easily from the plots. For DATA3,

which has been modified to illustrate the masking effect, the L-D plot shows that

the masked observation, 20, which has a low hi value is also located far from the

origin. From Figure 3.5(b), we see that observation 20 has large values of rl and cl

on the first axis. For DATA4, which has been modified to illustrate the swamping

effect, the L-D plot shows that the swamped observation, 13, which has a large hi

value is not located far from the origin, compared to other observations that are

located in the direction of the same axis.
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Figure 3.7: L-D plot of DATA1. Observation 3 and 4 are the leverage points, and are located on the
second axis.
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Figure 3.8: L-D plot of DATA2. Observations 14, 16, 18 and 19 are the leverage points, and two
observations (18 and 19) are located on the first axis, whilst the other two observations, 14 and 16, are
located on the second axis.
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Figure 3.9: L-D plot of DATA3. Observations 18, 19, and 20 are the leverage points, although
observation 20 is being masked since its hi value is not large. All leverage points are located on the first
axis.
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Figure 3.10: L-D plot of DATA4. Observations 15 and 19 are the leverage points, although observation
13 is being swamped since its hi value is large. Both leverage points are located on the first axis.
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Note that unless all the outlying observations are masking themselves, it may be

difficult at times to differentiate between masked observations which do not deviate

appreciably from the bulk of the data. In this instance, we recommend making use

of the information contained in the off-diagonal values of the hat matrix (that is, the

hij’s), since a large positive hij value indicates that observation i and observation

j are situated on “the same side of the bulk of the cases nearly on the same line

away from the centroid of the cases” (Gray and Ling, 1984). To illustrate, we con-

sider the Hx matrix of DATA3 which is shown on page 3-18. Even though the L-D

plot indicates that observation 20 is located far from the origin, since the masked

observation is located on the same side as the two leverage points, examination of

the hij values indicates a strong association between observations 18, 19 and 20.

Thus we see that the proposed procedure will identify all leverage points, and will minimise

the effects of masking and swamping.

To summarize, the procedure discussed above entails the following steps:

Step 1 Compute the rl, cl and hi values.

Step 2 Identify observations with large hi values using a stem-and-leaf display, and de-

termine the direction that each observation is located on (cl).

Step 3 Compute the distance (‖ fT
i ‖2) of each observation from the origin.

Step 4 Identify observations that are located far from the origin, using the L-D plot to

identify the all ‘true’ leverage points, and if unsure about observations that are

being masked, use the Hx matrix to determine their association with the identified

leverage points.
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Table 3.1
Hx matrix of DATA3. Entries are rounded values of 100× hij.

Observations 18, 19 and 20 are the leverage points, and the hij values, together with the L-D plot (Figure 3.9),
suggests that the three observations are located near each other. Observations 18 and 19 have a stronger

association with each other compared to the association they have with observation 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 5 5 3 6 6 −1 1 3 −3 5 6 −1 −5 0 −5 3 −3 −7 −11 −8

2 5 6 6 6 6 3 1 4 0 2 3 −0 −2 −1 −4 0 −3 −12 −12 −10

3 3 6 10 4 3 10 −0 4 8 −7 −5 2 7 −4 2 −7 −0 −18 −9 −9

4 6 6 4 7 7 0 1 4 −2 5 6 −1 −5 0 −6 3 −4 −10 −13 −10

5 6 6 3 7 8 −2 2 3 −4 7 8 −1 −7 1 −7 5 −4 −8 −13 −10

6 −1 3 10 0 −2 12 −1 3 12 −12 −10 3 12 −5 6 −11 2 −15 −3 −4

7 1 1 −0 1 2 −1 0 0 −2 2 2 −1 −2 1 −2 2 −1 −0 −2 −2

8 3 4 4 4 3 3 0 3 2 −0 1 0 0 −1 −2 −1 −1 −9 −7 −6

9 −3 0 8 −2 −4 12 −2 2 12 −13 −12 4 13 −5 8 −11 3 −11 1 −1

10 5 2 −7 5 7 −12 2 −0 −13 14 13 −4 −14 5 −9 12 −4 7 −6 −3

11 6 3 −5 6 8 −10 2 1 −12 13 13 −4 −14 4 −10 11 −5 4 −8 −5

12 −1 −0 2 −1 −1 3 −1 0 4 −4 −4 1 4 −1 2 −3 1 −3 1 0

13 −5 −2 7 −5 −7 12 −2 0 13 −14 −14 4 14 −5 10 −12 4 −8 5 3

14 0 −1 −4 0 1 −5 1 −1 −5 5 4 −1 −5 2 −2 4 −1 6 1 1

15 −5 −4 2 −6 −7 6 −2 −2 8 −9 −10 2 10 −2 8 −8 4 1 9 6

16 3 0 −7 3 5 −11 2 −1 −11 12 11 −3 −12 4 −8 11 −3 9 −3 −1

17 −3 −3 −0 −4 −4 2 −1 −1 3 −4 −5 1 4 −1 4 −3 2 2 6 4

18 −7 −12 −18 −10 −8 −15 −0 −9 −11 7 4 −3 −8 6 1 9 2 32 21 19

19 −11 −12 −9 −13 −13 −3 −2 −7 1 −6 −8 1 5 1 9 −3 6 21 23 19

20 −8 −10 −9 −10 −10 −4 −2 −6 −1 −3 −5 0 3 1 6 −1 4 19 19 15
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3.5 Illustrative Examples

In this section, we illustrate the procedure proposed above on three real data sets that

have appeared in the literature on regression diagnostics.

Example 1: Hawkins, Bradu and Kass Data

The first data set that we consider is that of Hawkins, Bradu and Kass (1984) (the HBK

artificial data set), which consists of one response variable, three explanatory variables

and 75 observations. The data, which is available from the robustbase package found in R

(Rousseeuw, P. and Croux, C. and Todorov, V. and Ruckstuhl, A. and Salibian-Barrera,

M. and Maechler, M., 2007) has been reproduced in Appendix A (p. A-1), and is con-

structed so that the first fourteen observations are outliers, with the first ten observations

“located at about the same place”, whilst observations 11 to 14 make up the second group

and are known to be good leverage points.

Table 3.3 shows the rl, cl, hi and DIST values of the HBK data set for the first 20 obser-

vations (the complete table can be found in Appendix B (p. B-1)), and the stem-and-leaf

display is shown in Table 3.2. From the tables, only observation 14, and possibly observa-

tions 12 and 13 are classified as leverage points because their hi values are large compared

to other observations in the data set. All three observations determine the direction of

and are well explained by the first axis. The first 14 observations however, are all large

contributors to the total variance (that is, they are located far from the origin).

Table 3.2
Hawkins, Bradu and Kass data: Stem-and-leaf display of the hi values

stem | leaf observation
0 | 00011111111111111122222222222222222333333333333444445555555555666677
1 | 03 13, 12
2 |
3 |
4 |
5 | 5 14

The decimal point is 1 digit to the left of the |.
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Table 3.3
Hawkins, Bradu and Kass data: rl, cl, hi and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3
(97.48%) (1.89%) (0.63%) hi (97.48%) (1.89%) (0.63%) DIST

1 0.045 0.005 0.001 0.051 0.998 0.002 0.000 0.131
2 0.045 0.001 0.001 0.047 0.999 0.000 0.000 0.130
3 0.053 0.007 0.012 0.072 0.996 0.003 0.001 0.155
4 0.053 0.002 0.012 0.067 0.998 0.001 0.001 0.154
5 0.053 0.000 0.007 0.060 0.999 0.000 0.001 0.155
6 0.051 0.011 0.000 0.062 0.996 0.004 0.000 0.149
7 0.050 0.003 0.001 0.054 0.999 0.001 0.000 0.147
8 0.044 0.002 0.004 0.050 0.999 0.001 0.001 0.130
9 0.049 0.001 0.016 0.066 0.997 0.001 0.002 0.144
10 0.044 0.001 0.028 0.073 0.995 0.001 0.004 0.129
11 0.070 0.002 0.009 0.081 0.999 0.001 0.001 0.205
12 0.077∗ 0.006 0.048 0.131∗ 0.995∗ 0.001 0.004 0.225
13 0.079∗ 0.000 0.017 0.096∗ 0.999∗ 0.000 0.001 0.231
14 0.095∗ 0.141 0.314 0.550∗ 0.952∗ 0.027 0.020 0.292
15 0.001 0.025 0.019 0.045 0.565 0.347 0.088 0.004
16 0.002 0.028 0.033 0.063 0.688 0.222 0.090 0.007
17 0.006 0.020 0.000 0.026 0.939 0.061 0.000 0.018
18 0.002 0.007 0.000 0.009 0.937 0.063 0.000 0.007
19 0.003 0.013 0.002 0.018 0.927 0.070 0.003 0.010
20 0.001 0.012 0.022 0.035 0.689 0.192 0.119 0.003
...

...
...

...
...

...
...

...
...

∗ hi large, rl > 0.027 and cl > 0.5.

The L-D plot shown in Figure 3.11, indicates that the first fourteen observations deviate

markedly from the other observations in the sample. Observations 1 to 10 which are

clustered in the same area, and observation 11 are being masked. From Table 3.3, we see

that all the eleven observations determine the direction of and are well explained by the

first axis as well.

Thus all the leverage points in the Hawkins, Bradu and Kass (1984) data set are correctly

identified when we use the L-D plot.
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Figure 3.11: L-D plot for the Hawkins, Bradu and Kass data.
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Example 2: Stack Loss Data

The second data set that we consider is the Stack Loss data set, which is taken from

Brownlee (1965), p. 454, and is available from R (R Development Core Team, 2008), and

has been reproduced in Appendix A (p. A-4). The data set comes from an experiment for

the oxidation of ammonia to nitric acid conducted over 21 successive days, and consists of

one response variable, the percentage of ammonia lost (stack. loss), and three explanatory

variables, the flow of air to the plant (Air. Flow), the temperature of cooling water (Water.

Temp), and the concentration of nitric acid in the absorbing liquid (Acid. Conc.).

Becker and Gather (1999) gave a summary of authors that have analysed this data set

using various measures, and Meloun and Militký (2001) presented a survey using various

diagnostic measures on the data set. Six observations, observations 1, 2, 3, 4, 17 and 21

(or combinations of), have been found to be outlying and/or influential.

We re-analysed the data using the procedure proposed above and the rl, cl, hi and DIST

values for the Stack Loss data are shown in Table 3.4, and the stem-and-leaf display is

shown in Table 3.5.
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Table 3.4
Stack Loss data: rl, cl, hi and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3
(71.10%) (22.00%) (6.90%) hi (71.10%) (22.00%) (6.90%) DIST

1 0.174∗ 0.062 0.018 0.254∗ 0.892∗ 0.099 0.009 0.415
2 0.162∗ 0.086 0.022 0.270∗ 0.849∗ 0.139 0.011 0.407
3 0.102 0.008 0.017 0.127 0.961 0.024 0.015 0.227
4 0.012 0.009 0.060 0.081 0.594 0.128 0.278 0.045
5 0.003 0.000 0.002 0.005 0.927 0.023 0.051 0.006
6 0.007 0.003 0.020 0.030 0.702 0.094 0.204 0.021
7 0.038 0.030 0.104 0.172 0.663 0.161 0.176 0.122
8 0.038 0.030 0.104 0.172 0.663 0.161 0.176 0.122
9 0.002 0.001 0.090 0.093 0.151 0.019 0.829 0.023
10 0.041 0.020 0.091 0.152 0.735 0.108 0.157 0.120
11 0.006 0.067 0.035 0.108 0.204 0.685 0.111 0.064
12 0.015 0.064 0.091 0.170 0.340 0.457 0.203 0.093
13 0.031 0.003 0.076 0.110 0.789 0.021 0.190 0.083
14 0.000 0.157 0.001 0.158 0.001 0.997 0.002 0.104
15 0.026 0.099 0.017 0.142 0.450 0.522 0.028 0.125
16 0.042 0.033 0.008 0.083 0.790 0.194 0.016 0.113
17 0.137∗ 0.227 0.000 0.364∗ 0.660∗ 0.339 0.000 0.442
18 0.074 0.028 0.011 0.113 0.885 0.103 0.013 0.179
19 0.053 0.026 0.048 0.127 0.805 0.124 0.071 0.139
20 0.019 0.013 0.000 0.032 0.822 0.178 0.000 0.050
21 0.018 0.034 0.185 0.237] 0.389 0.225 0.386 0.099
∗ hi large, rl > 0.095 and cl > 0.5.
] hi large, and rl > 0.095 on the third axis but cl < 0.5 on all three axes.

Table 3.5
Stack Loss data: Stem-and-leaf display of the hi values

stem | leaf observation
0 | 0 3 3 8 8 9
1 | 1 1 1 3∗ 3 4 5 6 7 7 7 ∗3
2 | 4 5 7 21, 1, 2
3 | 6 17

The decimal point is 1 digit to the left of the |.

From the tables, observations 1, 2, 17 and 21 have large hi values, and observations 1, 2

and 17 determine the direction of and are well explained by the first axis. Observation 21

on the other hand, is not explained well by any of the three axes, but is mostly responsi-

ble for determining the direction of the third axis (which explains only 6.9% of the total

variance). This indicates that observation 21 does not fit the structure of the bulk of the

data, and we will therefore treat the observation as a leverage point.
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The DIST column of Table 3.4 indicates that observations 1, 2, 3 and 17 are also large

contributors to the total variance. From Figure 3.12, observations 1, 2 and 17 which have

large hi values, are also located far from the origin. Observation 3 appears to be masked

because it has a small hi value but is located far from the origin relative to other obser-

vations. Since this observation does not deviate appreciably from the rest of the other

observations on the L-D plot, we use the Hx matrix to confirm whether it is indeed being

masked.

Figure 3.12: L-D plot for the Stack Loss data.
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From the Hx matrix shown on the next page for the Stack Loss data (note that only the

first five columns are shown, the complete Hx matrix can be found in Appendix A (p.

B-9)), observations 1, 2 and 3 appear to be located on the same side of the axis, although

the association is stronger between observations 1 and 2 compared to the association the

two observations have with observation 3. Observation 17 is not strongly associated with

any of these three observations since its hij value with all the three observations is very

small and negative. This suggests that observation 17 is not located near observations 1,

2 and 3.

Thus the leverage points identified in the Stack Loss data are observations 1, 2, 3, 17 and

21.
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Table 3.6
Hx matrix – Stack Loss data.

(Entries are rounded values of 100× hij)
1 2 3 4 5 · · ·

1 25 26 17 4 2 · · ·
2 26 27 17 4 2 · · ·
3 17 17 13 1 1 · · ·
4 4 4 1 8 2 · · ·
5 2 2 1 2 0 · · ·
6 3 3 1 5 1 · · ·
7 −1 −2 0 8 2 · · ·
8 −1 −2 0 8 2 · · ·
9 −2 −2 −2 8 1 · · ·

10 −1 0 −1 −8 −2 · · ·
11 −7 −8 −2 −8 −2 · · ·
12 −7 −8 −2 −11 −2 · · ·
13 −2 −1 −2 −8 −2 · · ·
14 −9 −11 −3 −4 −1 · · ·
15 −16 −18 −10 −2 −1 · · ·
16 −14 −15 −9 −2 −1 · · ·
17 −4 −1 −8 1 −1 · · ·
18 −9 −8 −9 1 −1 · · ·
19 −8 −8 −9 4 −0 · · ·
20 −3 −2 −3 −0 −1 · · ·
21 7 6 8 −11 −1 · · ·

Example 3: Health Club Data

The third data set that we consider is the Health Club data (refer to Appendix A, p. A-5),

which appears in Chatterjee and Hadi (1988), p. 129, and originates from health records

of 30 employees who were regular members of a company’s health club. The data set

consists of four explanatory variables: weight in pounds, resting pulse rate per minute,

arm and leg strength, time (in seconds) in a quarter-mile trial run, and one response

variable, time in seconds in a one-mile run.

Chatterjee and Hadi (1988) ran a model including the intercept, and found observation 23

to be outlying in the explanatory variables, observation 30 to be outlying in the residuals,

and observation 28 to be influential on the coefficients based on the influence curve.

According to the volume of confidence ellipsoids measure, observation 23 was the most

influential, whilst observations 28 and 30 had the most influence on the likelihood function.

Zhao, Lee and Hui (1994) on the other hand applied biased-corrected influence diagnostics

on the data set, and found observation 23 to influence the intercept, whilst observation

28 exerted its influence on all the coefficients. Observations 8 and 30 appeared to be

influential on the fourth coefficient.

We re-analysed the data using the procedure proposed above and the rl, cl, hi and DIST

values for the Health Club data are shown in Table 3.7, and the stem-and-leaf display is
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shown in Table 3.8.

Table 3.7
Health Club data: rl, cl, hi and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(61.14%) (25.33%) (9.25%) (4.28%) hi (61.14%) (25.33%) (9.25%) (4.28%) DIST

1 0.101∗ 0.013 0.033 0.069 0.216∗ 0.869∗ 0.046 0.043 0.042 0.284
2 0.035 0.027 0.022 0.010 0.094 0.699 0.221 0.067 0.013 0.122
3 0.009 0.012 0.001 0.035 0.057 0.556 0.293 0.009 0.143 0.041
4 0.016 0.005 0.025 0.000 0.046 0.734 0.091 0.174 0.000 0.053
5 0.000 0.020 0.011 0.026 0.057 0.007 0.701 0.138 0.154 0.029
6 0.012 0.043 0.007 0.016 0.078 0.370 0.560 0.035 0.034 0.077
7 0.004 0.027 0.010 0.009 0.050 0.250 0.625 0.089 0.037 0.043
8 0.018 0.163∗ 0.000 0.006 0.187∗ 0.210 0.784∗ 0.000 0.005 0.210
9 0.036 0.070 0.003 0.006 0.115 0.545 0.443 0.006 0.006 0.159
10 0.002 0.087 0.000 0.006 0.095 0.052 0.937 0.000 0.011 0.094
11 0.023 0.014 0.033 0.110 0.180∗∗ 0.561 0.135 0.120 0.184 0.102
12 0.015 0.044 0.005 0.002 0.066 0.437 0.536 0.023 0.004 0.083
13 0.012 0.187∗ 0.053 0.012 0.264∗ 0.121 0.789∗ 0.082 0.009 0.240
14 0.015 0.001 0.091 0.021 0.128 0.480 0.020 0.452 0.048 0.075
15 0.023 0.003 0.002 0.009 0.037 0.908 0.053 0.014 0.024 0.061
16 0.017 0.023 0.082 0.076 0.198] 0.379 0.216 0.283 0.121 0.108
17 0.029 0.001 0.154 0.030 0.214∗∗ 0.524 0.010 0.427 0.039 0.134
18 0.068∗ 0.022 0.001 0.103 0.194∗ 0.808∗ 0.106 0.001 0.085 0.207
19 0.006 0.002 0.004 0.001 0.013 0.777 0.129 0.089 0.006 0.018
20 0.053 0.003 0.013 0.012 0.081 0.932 0.019 0.034 0.015 0.140
21 0.016 0.029 0.035 0.006 0.086 0.482 0.353 0.154 0.012 0.084
22 0.054 0.005 0.024 0.006 0.089 0.902 0.032 0.059 0.007 0.147
23 0.244∗ 0.128 0.036 0.071 0.479∗ 0.794∗ 0.172 0.018 0.016 0.753
24 0.081 0.001 0.003 0.025 0.110 0.970 0.005 0.005 0.021 0.205
25 0.024 0.001 0.013 0.001 0.039 0.914 0.009 0.076 0.002 0.065
26 0.023 0.003 0.001 0.025 0.052 0.888 0.041 0.003 0.068 0.063
27 0.000 0.050 0.060 0.023 0.133 0.004 0.659 0.285 0.051 0.078
28 0.034 0.003 0.139 0.177 0.353] 0.498 0.018 0.304 0.179 0.169
29 0.024 0.000 0.050 0.055 0.129 0.677 0.004 0.212 0.107 0.088
30 0.004 0.015 0.089 0.052 0.160] 0.151 0.222 0.492 0.134 0.067
∗ hi large, rl > 0.067 and cl > 0.5.
] hi large, and rl > 0.067 on one of the axis but cl < 0.5 on all four axes.
∗∗ hi large, but rl < 0.067 and cl > 0.5 (or the reverse) on the kth axis.
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Table 3.8
Health data: Stem-and-leaf display of the hi values

stem | leaf observation
0 | 14455566788999
1 | 0113336∗8∗9∗9∗ ∗30, ∗11, ∗8 ,∗18
2 | 0226 16, 1, 17 ,13
3 | 5 28
4 | 8 23

The decimal point is 1 digit(s) to the left of the |

From the tables, observations 1, 13, 16, 17, 23 and 28 have large hi values, while ob-

servations 8, 11, 18 and 30 are also suspect because they have relatively large hi values

compared to the rest of the data in the sample. Observations 1, 18 and 23 determine the

direction of and are well explained by the first axis; observations 8 and 13 determine the

direction of and are well explained by the second axis; observations 11 and 17 determine

mostly the direction of the fourth axis, but are well explained by the first axis, and ob-

servations 16, 28 and 30 have large hi values but are not explained well by any one of the

four axes. Of the observations with large hi values, observations 11, 17 and 30 do not

appear to contribute much to the total variance.

From Figure 3.13, we see that observations 1, 8, 13, 18 and 23 are located far from the

origin; observations 11 and 17, which are located in the direction of the first axis, are not

located far from the origin, thus these observations appear to be swamped; observations

16, 28 and 30, do not lie in the direction of any axis, hence they do not fit the structure

of the bulk of the data, and we will therefore treat these three observations as leverage

points.

Notice that observation 24 has a low hi value, but is located far from the origin, thus this

observation appears to be masked. The Hx matrix for the Health Club data is shown on

page 3-28. Observation 24 appears to have a strong association with observation 28, thus

the presence of observation 28 may be masking observation 24.

Thus the identified leverage points for the Health Club data set are observations 1, 8, 13,

16, 18, 23, 24, 28 and 30.
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Figure 3.13: L-D plot for the Health Club data.
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Table 3.9
Hx matrix – Health Club data. Entries are rounded values of 100× hij.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 22 1 4 0 −4 −1 −5 2 0 0 −6 −6 0 −5 2 −4 −3 15 −1 −3 −1
2 1 9 6 6 −3 −5 −1 −8 −9 −5 −7 −2 7 0 −4 −2 7 −4 3 6 7
3 4 6 6 3 −4 −5 −3 −4 −6 −2 −7 0 7 3 −3 4 −1 2 1 4 2
4 0 6 3 5 0 −2 1 −5 −5 −2 −4 −1 1 −3 −2 −4 8 −4 2 4 6
5 −4 −3 −4 0 6 6 5 4 5 3 2 1 −10 −6 0 −5 7 −3 0 0 1
6 −1 −5 −5 −2 6 8 5 9 8 6 2 2 −13 −6 1 −4 4 2 −1 −2 −2
7 −5 −1 −3 1 5 5 5 5 3 4 −2 3 −10 −4 −2 −2 7 −2 1 2 1
8 2 −8 −4 −5 4 9 5 19 13 13 −5 7 −18 −2 −1 7 −3 12 −3 0 −9
9 0 −9 −6 −5 5 8 3 13 11 8 3 3 −13 −3 2 1 −3 6 −3 −4 −7

10 0 −5 −2 −2 3 6 4 13 8 10 −6 6 −13 −1 −2 6 −1 8 −2 1 −6
11 −6 −7 −7 −4 2 2 −2 −5 3 −6 18 −4 4 −1 7 −8 −4 −9 −1 −10 −1
12 −6 −2 0 −1 1 2 3 7 3 6 −4 7 −6 4 −3 8 −1 1 −1 4 −4
13 0 7 7 1 −10 −13 −10 −18 −13 −13 4 −6 26 12 1 5 −11 −6 1 −1 4
14 −5 0 3 −3 −6 −6 −4 −2 −3 −1 −1 4 12 13 −2 14 −12 0 −1 1 −5
15 2 −4 −3 −2 0 1 −2 −1 2 −2 7 −3 1 −2 4 −4 −3 0 −1 −5 −1
16 −4 −2 4 −4 −5 −4 −2 7 1 6 −8 8 5 14 −4 20 −13 7 −2 4 −8
17 −3 7 −1 8 7 4 7 −3 −3 −1 −4 −1 −11 −12 −3 −13 21 −9 4 7 10
18 15 −4 2 −4 −3 2 −2 12 6 8 −9 1 −6 0 0 7 −9 19 −3 −1 −8
19 −1 3 1 2 0 −1 1 −3 −3 −2 −1 −1 1 −1 −1 −2 4 −3 1 2 3
20 −3 6 4 4 0 −2 2 0 −4 1 −10 4 −1 1 −5 4 7 −1 2 8 3
21 −1 7 2 6 1 −2 1 −9 −7 −6 −1 −4 4 −5 −1 −8 10 −8 3 3 9
22 −9 2 2 0 −2 −3 0 0 −2 1 −4 6 4 8 −4 11 −3 −3 0 5 −2
23 30 2 5 0 −7 −4 −10 −6 −3 −6 −1 −14 9 −6 6 −10 −7 17 −1 −8 1
24 4 −8 −6 −5 3 5 0 4 8 1 10 −3 −5 −4 6 −6 −4 3 −2 −9 −4
25 −3 5 2 4 1 −1 2 −3 −4 −1 −3 0 0 −2 −3 −2 8 −5 2 5 5
26 −8 2 −1 2 2 0 2 −5 −3 −3 3 0 2 −1 −1 −4 6 −10 2 2 4
27 −6 −1 −1 −2 −3 −5 −5 −10 −4 −8 12 −3 14 6 4 0 −8 −9 0 −5 1
28 −11 −12 −10 −8 2 3 −2 −3 7 −4 24 −3 4 3 9 −4 −11 −10 −3 −13 −5
29 −3 2 5 −1 −7 −7 −4 −1 −4 0 −6 4 10 12 −3 15 −10 3 −1 4 −4
30 −1 5 −1 6 5 2 4 −8 −4 −5 3 −5 −3 −11 0 −16 16 −10 4 2 10
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Table 3.9
Hx matrix – Health Club data . . . continued.

22 23 24 25 26 27 28 29 30
1 −9 30 4 −3 −8 −6 −11 −3 −1
2 2 2 −8 5 2 −1 −12 2 5
3 2 5 −6 2 −1 −1 −10 5 −1
4 0 −0 −5 4 2 −2 −8 −1 6
5 −2 −7 3 1 2 −3 2 −7 5
6 −3 −4 5 −1 −0 −5 3 −7 2
7 0 −10 −0 2 2 −5 −2 −4 4
8 0 −6 4 −3 −5 −10 −3 −1 −8
9 −2 −3 8 −4 −3 −4 7 −4 −4

10 1 −6 1 −1 −3 −8 −4 0 −5
11 −4 −1 10 −3 3 12 24 −6 3
12 6 −14 −3 0 −0 −3 −3 4 −5
13 4 9 −5 −0 2 14 4 10 −3
14 8 −6 −4 −2 −1 6 3 12 −11
15 −4 6 6 −3 −1 4 9 −3 0
16 11 −10 −6 −2 −4 −0 −4 15 −16
17 −3 −7 −4 8 6 −8 −11 −10 16
18 −3 17 3 −5 −10 −9 −10 3 −10
19 0 −1 −2 2 2 −0 −3 −1 4
20 5 −8 −9 5 2 −5 −13 4 2
21 −2 1 −4 5 4 1 −5 −4 10
22 9 −15 −7 2 2 1 −2 9 −6
23 −15 48 8 −5 −9 −1 −7 −5 1
24 −7 8 11 −5 −2 3 14 −7 −0
25 2 −5 −5 4 3 −2 −6 −1 5
26 2 −9 −2 3 5 3 3 −2 6
27 1 −1 3 −2 3 13 17 2 −1
28 −2 −7 14 −6 3 17 35 −4 −2
29 9 −5 −7 −1 −2 2 −4 13 −11
30 −6 1 −0 5 6 −1 −2 −11 16

3.6 Discussion and Summary

The regression quantities such as the coefficients, are known to be easily affected by

outlying observations, and it is important to identify such observations, because they

could potentially alter the fit of the least squares regression line away from the direction

of the majority of the observations. In this chapter, we considered a procedure to identify

leverage points that makes use of the matrix of the left singular vectors U (that is, the

eigenvectors of XXT).

The diagonal (hi) values of the hat matrix are often used to identify observations that are

outlying in the explanatory variables. Examining the hi values by themselves may not

correctly identify all leverage points as the hi values are known to suffer from the masking

and swamping effects when there are multiple outliers.

The proposed procedure, which is based on the hi values, is an adaptation of a technique
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used to identify outliers in correspondence analysis, and entails expressing the hi values

as sums of contributions of variance of each axis that is explained by each observation

(rl), and using these contributions, together with the contributions of variance of each

observation that is explained by each axis (cl), to identify the axis that observations

are outlying on. Determining the axis that observations are outlying on is important

because this tells us something about the type of outlier, that is, whether the observation

inflates variances when located in the first few axes, or whether the observation differs in

multivariate structure when located in the last few axes or because the observation is not

explained well by any axis.

We suggested guidelines to determine large values of rl and cl (rl > 2/n and cl > 0.5),

and from the examples used, we notice also that when an observation is being masked, we

are able to determine the axis that the observation is outlying on, since rl and cl will be

large on the kth axis. When observations are being swamped, this pattern is not adhered

to, that is, the observation is not well explained by the axis whose direction it determines

the most.

We also suggested examining an easy to implement graphical display called a leverage-

distance (L-D) plot that highlights any observations may be being masked or swamped.

The success of the proposed procedure was illustrated using an artificial data set, with

various observations modified to be outliers, and computations were then carried on three

real data sets that have appeared in the literature on regression diagnostics. Table 3.10

presents a summary of the observations that were identified as leverage points, in each of

the real data sets using the proposed procedure.

Table 3.10: Summary of the identified leverage points

Data Leverage Points

HBK 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Stack Loss 1, 2, 3, 17, 21
Health Club 1, 8, 13, 16, 18, 23, 24, 28, 30

Any differences between the results that we obtained and those obtained in the literature

using the diagonal values of the hat matrix apart from not taking into account the effects

of masking and swamping, may be due to the fact that the matrix X is standardised, and

we have not included the intercept term in our analysis.

The procedure may also be applied to any n×m matrix where we assume the data to be
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normal, for example, in discriminant analysis problems. Most measures typically used as

diagnostics for discriminant analysis problems are a function of either the Mahalanobis

distance of the observation from the group mean or the linear discriminant function (see

Fung (1995) and Lachenbruch (1997)). The Mahalanobis distance however, can be written

as a function of the hi values (refer to Chatterjee and Hadi (1988)), thus any diagnostic

measure based on the Mahalanobis distance will suffer from the same problems that the

hi values suffer from.

One drawback of using the proposed procedure is that observations with large hi values

that are not explained well by any axis are automatically treated as leverage points if

they contribute highly to the determination of the direction of at least one of the axes.

This may result in too many observations being declared incorrectly as leverage points.

We may also append the the vector y to the matrix of explanatory variables, X, and

extend the procedure to consider the leverage points when we take the response vari-

able into account. The results of this approach will be provided in the next chapter where

we also consider another diagnostic measure that takes the response variable into account.
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Chapter 4

Identifying Outlying Observations in the Resid-

uals

In this chapter we consider observations that are outlying in the residuals. Observations that
deviate from the bulk of the data can easily influence the fit of the least squares regression
line, and the residuals, which take the response variable, y, into account, are often examined to
determine the observations that may have influenced the fit of the least squares regression line,
hence affecting the regression coefficients.

Three different ways of identifying regression outliers are considered. The procedure that was
proposed in Chapter 3 is extended to the diagonal values of the Hz matrix, where Hz =
Z(ZTZ)−1ZT, and Z = (X : y). The L-D plot from this is informative in highlighting obser-
vations that may be masked or swamped, but we are not able to differentiate between leverage
points and regression outliers, since hz may be large because of the large hi value or a large
residual value.

One drawback of using transformed residuals such as the Studentized residuals is that they may
fail to identify the regression outliers when these observations are being accommodated by the
least squares fit, thus we propose a numerical measure to be used in conjunction with the Stu-
dentized residuals for identifying regression outliers. This measure is based on the role that each
observation plays in the displacement of other observations from the least squares regression fit-
ted line. The proposed measure is based on the off-diagonal values of the hat (Hx) matrix, and
computations on the examples based on the same real data sets that we considered in Chapter
3 are presented to illustrate how the proposed measure operates. The artificial examples used
illustrate the success of using the measures together.
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4.1 Introduction

In the preceding chapter we considered outlying observations in the explanatory variables

only, and did not consider the outlyingness of the observations when we take the response

variable, y, into account. In this chapter, we consider the deviation of observations from

the least squares regression line, that is, observations that are outlying in the residuals,

also known as regression outliers.

The residuals (defined as the difference between the observed and predicted values by the

regression model) are often examined because they not only take the response variable into

account, but also aid in the investigation of regression assumptions. The residuals in their

raw form (ε̂ = y−Xβ̂ = (I−UUT)y) are often not used because they do not approximate

the unobserved errors well, since the diagonal values of the hat matrix (UUT = Hx) need

to be equal and the off-diagonal values need to be sufficiently small to ensure that the

residuals are uncorrelated and have constant variance (Cook and Weisberg, 1982b). Thus,

transformations of the residuals, inter alia: normalised residuals, standardised residuals,

and the Studentized residuals, are often preferred over the raw residuals because they

overcome some of the limitations of the raw residuals.

The transformed residuals are however not without any problems. The least squares

method works by minimising the sum of squared deviations from the fitted line, and large

deviations are often accommodated at the expense of less deviating observations. Thus

observations that deviate from the bulk of the data may have small residuals because they

may have pulled the fitted line in their direction. It is for this reason that diagnostics

based on the least squares residuals often fail to reveal outlying observations (Hocking,

2003, Rousseeuw and Leroy, 1987).

In this chapter we extend the application of the procedure that was proposed in Chapter

3, and consider the outlying observations when we take the response variable into account.

We also propose a measure to identify outlying observations in the residuals, or regression

outliers, that is based on the residuals in their raw form, but differs from the diagnostics

that are already in use in that we consider instead, the role that each observation plays

in the displacement of other observations from the fitted least squares regression line.

This chapter is organised as follows. In the next section, we briefly review the use of the

Studentized residuals in identifying regression outliers, and use some of the artificial data

sets used in Chapter 3 to illustrate the problems encountered when using the Studentized

residuals. We then extend the procedure that was proposed in Chapter 3 and consider

the identification of outlying points when we take the response variable into account in

section 4.3. In section 4.4, the second residual diagnostic measure is presented, using the
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same artificial data sets to compare and contrast the differences between the results of

the proposed measure and those of the Studentized residuals. We then consider the same

three real data sets that were introduced in Chapter 3 in section 4.5, and end the chapter

with a discussion of the main findings of the results presented in the chapter.

4.2 The Studentized Residuals

Let X = UDαV
T be the SVD of the standardised matrix X. The regression residuals are

given by

ε̂ = y − ŷ

= y −Xβ̂

=
[
I− (UDαV

T)(VD−1
α UT)

]
y

= (I−UUT)y

(4.1)

and the Studentized residuals are given by:

r∗(i) =
ε̂i

σ̂(i)

√
1− hi

(4.2)

where σ̂2
(i) = yT

(i)(I −Hx(i))y(i)/(n −m − 1) is the the estimate of σ when the ith obser-

vation is excluded, and Hx(i) = X(i)(X
T
(i)X(i))

−1XT
(i) is the hat matrix excluding the ith

observation.

The Studentized residuals are the preferred residuals because they are easily related to

the t-distribution, and have been standardised to have equal variances (Welsch and Kuh,

1977). Belsley et al. (1980) recommended a cut-off value of | 2 | for r∗(i).

We have already mentioned one potential disadvantage of using the Studentized residuals;

that is, large deviations may be accommodated at the expense of less deviating observa-

tions. Another potential drawback associated with the use of the Studentized residuals, is

that they may suffer from the masking and swamping effects, since they are a function of

the diagonal values of the hat matrix, Hx. In the following three examples we illustrate

these problems associated with using the Studentized residuals:
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Example 1

The first example that we consider is the same one we used in Figure 3.1(b) (p. 3-5), where

there was a single leverage point. The same leverage point, observation 14, has now been

modified to be a regression outlier as illustrated in Figure 4.1(a). Figure 4.1(b) illustrates

that this observation is not being accommodated excessively by the least squares fit at

the expense of the other non-outlying observations, and Table 4.1 shows the Studentized

residuals for this data set. Observation 14 has a large Studentized residual.

Figure 4.1: Example 1 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)

Table 4.1
Studentized residuals for Example 1

r∗(i) r∗(i)
1 0.218 11 1.139
2 −0.143 12 −0.092
3 −0.774 13 −0.763
4 0.112 14 −11.926 ]

5 0.106 15 −0.126
6 −0.960 16 1.300
7 0.533 17 0.138
8 −0.579 18 0.569
9 −0.500 19 0.576

10 1.323 20 1.098
] r∗(i) >| 2 |
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Example 2

The second example that we consider is based on the data used in Figure 3.2(a) (p. 3-6),

where four observations, observations 14, 16, 18 and 19 are leverage points. Observations

18 and 19 have been modified to be regression outliers as illustrated in Figure 4.2(a).

Figure 4.2(b) illustrates that these observations are being accommodated by the least

squares fit at the expense of other non-outlying observations, although their residuals are

still large. Table 4.2 shows the Studentized residuals for the data set. From the table, we

see that observations 18 and 19 have large Studentized residuals. Observation 20, whose

distance from the regression plane is relatively large (refer to Figure 4.2(b)), also has a

Studentized residual value that is greater than 2.

Figure 4.2: Example 2 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)

Table 4.2
Studentized residuals for Example 2

r∗(i) r∗(i)
1 −0.362 11 0.611
2 −0.791 12 0.512
3 −1.008 13 0.484
4 −0.684 14 −0.099
5 −0.616 15 1.356
6 −0.536 16 0.423
7 0.660 17 1.237
8 −0.545 18 −2.225]

9 0.161 19 −2.228]

10 0.970 20 2.057]

] r∗(i) >| 2 |
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Example 3

The third example that we consider is based on the data used in Figure 3.3(a) (p. 3-9),

where three observations, observations 18, 19 and 20 are leverage points, and observation

20 is a masked leverage point. All three observations have been modified to be regression

outliers as illustrated in Figure 4.3(a). Figure 4.3(b) illustrates that these observations

are being accommodated by the least square fit at the expense of other non-outlying

observations.

Table 4.3 shows the Studentized residuals for this data set. From the table, we see that

none of the three observations have Studentized residuals greater than 2, although the

Studentized residual of observation 18 is large enough to be flagged as a regression outlier.

From Figure 4.3(b), we see that the distance of observation 18 to the regression plane is

relatively large compared to that of observations 19 and 20, hence the small Studentized

residuals for these two observations.

Figure 4.3: Example 3 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)
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Table 4.3
Studentized residuals for Example 3

r∗(i) r∗(i)
1 −0.566 11 0.480
2 −1.034 12 0.594
3 −1.081 13 0.699
4 −0.953 14 1.308
5 −0.865 15 1.663
6 −0.552 16 1.270
7 0.648 17 1.456
8 −0.623 18 −1.939
9 0.234 19 −1.229

10 0.907 20 −0.837

4.3 The Diagonal Values of Hz

If we let Z be the matrix formed when we append the response variable, y, to the matrix

of explanatory variables X, that is, Z = (X : y), and Hz = Z(ZTZ)
−1

ZT, then Hz can

be written as

Hz = Hx +
ε̂ε̂T

ε̂Tε̂

which shows that Hz is a function of Hx and the residuals. Thus we see that Hz will be

large whenever the first term, Hx, is large and/or the second term is large.

The diagonal values of Hz, that is, the hz values, are often used to identify regression

outliers. Values of hz will however, suffer from the same problems of masking and swamp-

ing as the hi values, as we have already seen in Chapter 3. Another potential problem

with using the hz values is that since they are a function of the residuals, and because of

the possibility of the ‘real’ outlying observations being accommodated at the expense of

the less deviating observations, the non-outlying observations may be swamped. Thus we

advocate the same procedure that was proposed in Chapter 3 when dealing with the hz

values to identify regression outliers.

We illustrate the use of the procedure on the hz values using the same three data sets

used in the examples above for the Studentized residuals.

Example 1

Table 4.4 shows values of hz, rl, cl and DIST for the first example, where observation 14 is

a regression outlier. From the table, we see that observation 14 is outlying on the second
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axis.

The L-D plot of the data is shown in Figure 4.4. From the plot, we see that even though

some of the observations that are explained well by the first axis are located far from the

origin (or make a large contribution to the total variance), the contribution of observation

14 to the total variance, which is located in the direction of the second axis, which explains

only 22.25% of the total variance in the data, is comparatively large.

Table 4.4
Example 1 – rl, cl, hz and DIST values

rl cl
Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

hz (77.36%) (22.25%) (0.39%) (77.36%) (22.25%) (0.39%) DIST
1 0.070 0.066 0.000 0.004 0.999 0.001 0.000 0.153
2 0.100 0.095 0.005 0.000 0.984 0.016 0.000 0.225
3 0.142 0.060 0.060 0.022 0.774 0.224 0.001 0.179
4 0.109 0.107 0.000 0.002 1.000 0.000 0.000 0.247
5 0.104 0.101 0.001 0.002 0.996 0.004 0.000 0.235
6 0.143 0.005 0.099 0.039 0.152 0.842 0.006 0.079
7 0.017 0.000 0.001 0.016 0.050 0.684 0.266 0.001
8 0.055 0.033 0.007 0.015 0.938 0.060 0.002 0.080
9 0.105 0.005 0.089 0.011 0.152 0.846 0.002 0.070
10 0.164 0.005 0.077 0.082 0.185 0.800 0.015 0.064
11 0.145 0.020 0.060 0.065 0.537 0.454 0.009 0.088
12 0.015 0.005 0.009 0.001 0.684 0.316 0.000 0.019
13 0.155 0.036 0.090 0.029 0.583 0.415 0.002 0.145
14 0.939∗ 0.006 0.374∗ 0.559 0.054 0.922∗ 0.024 0.271
15 0.123 0.097 0.024 0.002 0.933 0.067 0.000 0.243
16 0.145 0.000 0.067 0.078 0.009 0.971 0.020 0.046
17 0.060 0.056 0.004 0.000 0.982 0.018 0.000 0.132
18 0.119 0.107 0.000 0.012 0.999 0.001 0.001 0.248
19 0.143 0.130 0.001 0.012 0.998 0.001 0.000 0.302
20 0.146 0.065 0.031 0.050 0.878 0.119 0.003 0.173
∗ hz large, rl > 0.1 and cl > 0.5.
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Figure 4.4: L-D plot for Example 1
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Example 2

Table 4.5 shows values of hz, rl, cl and DIST for the second example. Recall that for this

data set, observations 14, 16, 18 and 19 are leverage points, and observations 18 and 19

have been modified to be regression outliers. Both observations 18 and 19 are located in

the direction of the first axis.

The L-D plot of the data is shown in Figure 4.5. From the plot, we see that observations

14, 16, 18 and 19 are located far from the origin (or make a large contribution to the

total variance) relative to other observations that are located in the direction of the same

axis. Observation 20, which has a large Studentized residual, appears to be swamped,

since it has a large hz value, but is not located too far from the origin relative to other

non-outlying observations that are located in the direction of the first axis.
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Table 4.5
Example 2 – rl, cl, hz and DIST values

rl cl
Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

hz (77.80%) (20.70%) (1.50%) (77.80%) (20.70%) (1.50%) DIST
1 0.060 0.000 0.003 0.063 0.998 0.001 0.001 0.141
2 0.085 0.005 0.020 0.110 0.980 0.016 0.004 0.201
3 0.051 0.061 0.031 0.143 0.753 0.238 0.009 0.158
4 0.095 0.000 0.015 0.110 0.997 0.000 0.003 0.223
5 0.092 0.002 0.012 0.106 0.993 0.005 0.003 0.215
6 0.004 0.106 0.007 0.117 0.135 0.861 0.004 0.077
7 0.000 0.000 0.025 0.025 0.121 0.087 0.792 0.001
8 0.030 0.008 0.010 0.048 0.928 0.066 0.006 0.076
9 0.004 0.099 0.004 0.107 0.121 0.876 0.003 0.070
10 0.007 0.072 0.042 0.121 0.269 0.702 0.030 0.064
11 0.022 0.058 0.018 0.098 0.589 0.402 0.009 0.089
12 0.003 0.012 0.016 0.031 0.489 0.467 0.045 0.017
13 0.030 0.105 0.015 0.150 0.511 0.484 0.005 0.135
14 0.003 0.193∗ 0.006 0.202∗ 0.059 0.939∗ 0.002 0.128
15 0.077 0.035 0.081 0.193 0.877 0.105 0.018 0.206
16 0.000 0.198∗ 0.002 0.200∗ 0.007 0.992∗ 0.001 0.124
17 0.042 0.007 0.072 0.121 0.926 0.043 0.031 0.106
18 0.155∗ 0.013 0.233 0.401∗ 0.951∗ 0.022 0.028 0.381
19 0.191∗ 0.001 0.225 0.417∗ 0.976∗ 0.002 0.022 0.457
20 0.046 0.022 0.161 0.229∗∗ 0.837 0.107 0.056 0.129
∗ hz large, rl > 0.1 and cl > 0.5.
∗∗ hi large, but rl < 0.1 and cl > 0.5 (or the reverse) on the kth axis.

Figure 4.5: L-D plot for Example 2

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

 

Distance from the origin

h z

1

2

3

45
6

7

8

9
10

11

12

13

14
1516

17

18
19

20

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

Unassigned
Axis 1
Axis 2
Axis 3

4-10



Identifying Outlying Observations in the Residuals

Example 3

Table 4.6 shows values of hz, rl, cl and DIST for the third example. Recall that for this

data set, observations 18, 19 and 20 are leverage points, and have been modified to be

regression outliers as well.

The L-D plot of the data is shown in Figure 4.6. From the plot, we see that observation

20 is being masked, whilst observation 15 appears to be swamped. All three observations

(18, 19 and 20) are located in the direction of the first axis.

Table 4.6
Example 3 – rl, cl, hz and DIST values

rl cl
Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

hz (86.18%) (11.58%) (2.24%) (86.18%) (11.58%) (2.24%) DIST
1 0.071 0.057 0.001 0.013 0.992 0.002 0.006 0.148
2 0.119 0.076 0.008 0.035 0.975 0.013 0.012 0.201
3 0.160 0.046 0.092 0.022 0.779 0.211 0.010 0.152
4 0.119 0.086 0.000 0.033 0.990 0.000 0.010 0.225
5 0.118 0.084 0.003 0.031 0.986 0.004 0.009 0.221
6 0.139 0.004 0.134 0.001 0.188 0.810 0.001 0.058
7 0.028 0.001 0.006 0.021 0.326 0.405 0.269 0.005
8 0.049 0.029 0.008 0.012 0.954 0.036 0.010 0.078
9 0.124 0.002 0.107 0.015 0.139 0.838 0.023 0.044
10 0.178 0.011 0.150 0.017 0.349 0.637 0.014 0.082
11 0.143 0.026 0.114 0.003 0.628 0.370 0.002 0.107
12 0.032 0.002 0.005 0.025 0.547 0.225 0.228 0.007
13 0.168 0.022 0.101 0.045 0.602 0.366 0.032 0.095
14 0.109 0.003 0.040 0.066 0.275 0.550 0.175 0.025
15 0.206∗∗ 0.057 0.014 0.135 0.913 0.031 0.056 0.161
16 0.183 0.001 0.139 0.043 0.055 0.892 0.053 0.054
17 0.131 0.029 0.000 0.102 0.915 0.000 0.084 0.081
18 0.442∗ 0.140∗ 0.075 0.227 0.897∗ 0.065 0.038 0.404
19 0.292∗ 0.195∗ 0.002 0.095 0.986∗ 0.002 0.012 0.512
20 0.187 0.129 0.000 0.058 0.988 0.000 0.012 0.337
∗ hz large, rl > 0.1 and cl > 0.5.
∗∗ hi large, but rl < 0.1 and cl > 0.5 (or the reverse) on the kth axis.
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Figure 4.6: L-D plot for Example 3
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4.4 The Proposed Residual Diagnostic

From the examples used above, extending the procedure that was proposed in Chapter 3

to the diagonal values of the Hz matrix appears to work well in identifying the regression

outliers. However, as already noted in the previous chapter, one potential disadvantage

of using the proposed procedure is that observations with large hz values that are not

explained well by any axis are automatically treated as leverage points if they contribute

highly to the determination of the direction of at least one of the axes. This may result

in too many observations being declared incorrectly as regression outliers.

The Studentized residuals on the other hand, perform well when the outlying observations

are not being accommodated by the least squares fit, but as we have already seen, the

Studentized residuals may fail to highlight the regression outliers when these observations

are being accommodated by the least squares fit.

In this section we propose a measure that should be used in conjunction with the Studen-

tized residuals (or other transformed residuals), which will highlight those observations

that are being accommodated by the least squares fit, and as a result, are inducing large

residuals for other observations.
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From (4.1), if we put

U =


uT

1

uT
2
...

uT
n


then the ith residual is given by

ε̂i =
(
1− uT

i ui
)
yi −

n∑
j=1
j 6=i

uT
i ujyj

= rii +
n∑
j=1
j 6=i

rij

Thus rij is the contribution of observation j to the ith residual. We can interpret

n∑
i=1

rij for all j = 1, 2, . . . , n

as the sum of contributions of observation j to all the residuals. That is, it is the residual

induced by observation j. But since some of the rij’s are positive and some negative,

these contributions may cancel out. Thus of more interest is

rj =
n∑
i=1

| rij | for all j = 1, 2, . . . , n

the sum of the absolute contributions of observation j to all the residuals, and also

rj
n∑
j=1

rj

and Rj =
(n× rj)

n∑
j=1

rj

for all j = 1, 2, . . . , n

The former indicates the proportion of the absolute contributions that is induced by ob-

servation j, and the latter is an easy-to-interpret statistic — if an observation contributes

equally to all the residuals, then Rj will equal 1. Therefore values of Rj greater than 1

indicate that observation j makes a more-than-average contribution to the residuals of

other observations. As a crude cut-off value, we will consider all observations which have
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Rj values greater than 2 as observations that make a more-than-average contribution to

the residuals of other observations.

Rj will be large when an observation is making a more-than-average contribution to the

residuals of other observations, and the same data used in the examples above will be

used to illustrate this. (Note that all computations on the examples were performed in

R (R Development Core Team, 2008), and the source codes written for the measure are

included in Appendix C, section C.1 (p. C-3).)

Example 1

Recall that for the first example, observation 14 has been modified to be a regression

outlier as was illustrated in Figures 4.1(a) and 4.1(b) (p. 4-4). Since this observation is

not being accommodated excessively by the least squares fit at the expense of the other

non-outlying observations, the Studentized residuals correctly identify this observation

as a regression outlier (refer to Table 4.7). The value of Rj for observation 14 is low,

indicating that the observation is not making a more-than-average contribution to the

residuals of other observations.

Table 4.7
Rj values and Studentized residuals for Example 1

Rj r∗(i)
1 1.372 0.218
2 1.652 −0.143
3 1.412 −0.774
4 1.686 0.112
5 1.600 0.106
6 0.602 −0.960
7 0.002 0.533
8 1.030 −0.579
9 0.090 −0.500

10 0.210 1.323
11 0.604 1.139
12 0.318 −0.092
13 0.728 −0.763
14 1.098 −11.926]

15 1.418 −0.126
16 0.228 1.300
17 1.188 0.138
18 1.634 0.569
19 1.718 0.576
20 1.410 1.098

] r∗(i) >| 2 |
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Example 2

For the second example, two observations, observations 18 and 19 have been modified

to be regression outliers as was illustrated in Figures 4.2(a) and 4.2(b) (p. 4-5). These

two observations are also being accommodated excessively by the least squares fit at the

expense of the other non-outlying observations, and the Studentized residuals correctly

identify these observations as regression outliers (refer to Table 4.8). The values of Rj for

observations 18 and 19 are greater than 2, indicating that the observations are making

a more-than-average contribution to the residuals of other observations. Observation 20,

which has a large Studentized residual value, and was identified as being swamped using

the L-D plot, has a low Rj value.

Table 4.8
Rj values and Studentized residuals for Example 2

Rj r∗(i)
1 1.340 −0.362
2 1.582 −0.791
3 1.356 −1.008
4 1.610 −0.684
5 1.530 −0.616
6 0.646 −0.536
7 0.174 0.660
8 1.044 −0.545
9 0.082 0.161

10 0.368 0.970
11 0.694 0.611
12 0.100 0.512
13 0.430 0.484
14 0.782 −0.099
15 1.024 1.356
16 0.290 0.423
17 0.848 1.237
18 2.476 −2.225]

19 2.546 −2.228]

20 1.078 2.057]

] r∗(i) >| 2 |

Example 3

For the third example, where observations 18, 19 and 20 are regression outliers as was

illustrated in Figures 4.3(a) and 4.3(b) (p. 4-6), although Figure 4.3(b) illustrated that

these observations were being accommodated by the least squares fit at the expense of

other non-outlying observations.
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Table 4.9 shows the Rj values and the Studentized residuals for this data set. From the

table, we see the Rj values for observation 18, 19 and 20 are greater than 2, and none of

the three observations have Studentized residuals greater than 2, although the Studentized

residual of observation 18 is large enough to be flagged as a regression outlier.

Table 4.9
Rj values and Studentized residuals for Example 3

Rj r∗(i)
1 1.304 −0.566
2 1.530 −1.034
3 1.312 −1.081
4 1.554 −0.953
5 1.472 −0.865
6 0.618 −0.552
7 0.252 0.648
8 1.036 −0.623
9 0.146 0.234

10 0.448 0.907
11 0.706 0.480
12 0.008 0.594
13 0.298 0.699
14 0.236 1.308
15 0.876 1.663
16 0.142 1.270
17 0.708 1.456
18 2.486∗ −1.939
19 2.586∗ −1.229
20 2.284∗ −0.837

∗ Rj > 2

4.5 Illustrative Examples

We illustrate the extension of the procedure that was proposed in Chapter 3 using the

diagonal values of the Hz matrix, the Studentized residuals and the residual measure, Rj,

proposed in this chapter on the three real data sets that were introduced in the previous

chapter.

Example 1: Hawkins, Bradu and Kass data

Recall that this data set has been constructed so that the first fourteen observations are

outliers, with observations 11 to 14 known to be good leverage points.
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Results Based on the Diagonal Values of Hz

Table 4.10 shows the rl, cl, hz and DIST values of the HBK data set for the first 20

observations (the complete table can be found in Appendix B (p. B-4)), and the stem-

and-leaf display is shown in Table 4.11. From the tables, observations 11, 12, 13 and 14

are classified as regression outliers because their hz values are large compared to other

observations in the data set. All four observations determine the direction of and are well

explained by the first axis. The first 14 observations however, are all large contributors

to the total variance (that is, they are located far from the origin).

Table 4.10
Hawkins, Bradu and Kass data: rl, cl, hz and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(88.99%) (9.19%) (1.39%) (0.43%) hz (88.99%) (9.19%) (1.39%) (0.43%) DIST

1 0.056 0.022 0.002 0.001 0.081 0.960 0.039 0.000 0.000 0.209
2 0.058 0.028 0.004 0.001 0.091 0.952 0.047 0.001 0.000 0.217
3 0.066 0.025 0.003 0.003 0.097 0.962 0.037 0.001 0.000 0.245
4 0.063 0.013 0.005 0.004 0.085 0.977 0.021 0.001 0.000 0.229
5 0.065 0.020 0.000 0.001 0.086 0.970 0.030 0.000 0.000 0.239
6 0.063 0.021 0.007 0.004 0.095 0.964 0.034 0.002 0.000 0.234
7 0.066 0.034 0.001 0.010 0.111 0.948 0.051 0.000 0.001 0.248
8 0.059 0.032 0.000 0.000 0.091 0.946 0.054 0.000 0.000 0.220
9 0.060 0.017 0.004 0.006 0.087 0.970 0.029 0.001 0.000 0.220
10 0.057 0.026 0.005 0.012 0.100 0.953 0.045 0.001 0.001 0.212
11 0.041∗ 0.162 0.000 0.048 0.251∗ 0.707∗ 0.289 0.000 0.004 0.207
12 0.045∗ 0.180 0.017 0.133 0.375∗ 0.697∗ 0.289 0.004 0.010 0.229
13 0.050∗ 0.146 0.003 0.000 0.199∗ 0.767∗ 0.232 0.001 0.000 0.232
14 0.058∗ 0.213 0.093 0.227 0.591∗ 0.702∗ 0.267 0.018 0.013 0.294
15 0.001 0.002 0.029 0.014 0.046 0.639 0.105 0.223 0.032 0.007
16 0.001 0.000 0.029 0.034 0.064 0.693 0.017 0.212 0.078 0.008
17 0.005 0.000 0.021 0.000 0.026 0.937 0.008 0.056 0.000 0.021
18 0.002 0.000 0.008 0.000 0.010 0.948 0.000 0.051 0.000 0.009
19 0.003 0.000 0.013 0.003 0.019 0.932 0.004 0.060 0.004 0.012
20 0.001 0.000 0.013 0.021 0.035 0.746 0.004 0.168 0.082 0.004
...

...
...

...
...

...
...

...
...

...
...

∗ hz large, rl > 0.027 and cl > 0.5.
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Table 4.11
Hawkins, Bradu and Kass data: Stem-and-leaf display of the hz values

stem | leaf observation
0 | 0111111111111111222222222222222233333333334444444444555566667899999
1 | 0001
2 | 05 13, 11
3 | 8 12
4 |
5 | 9 14

The decimal point is 1 digit to the left of the |.

The L-D plot shown in Figure 4.7, indicates that the first fourteen observations deviate

markedly from the other observations in the sample when we take the response variable

into account. Observations 1 to 10 which are clustered in the same area, are being masked.

From Table 4.10, we see that all the ten observations determine the direction of and are

well explained by the first axis as well.

Figure 4.7: L-D plot for the Hawkins, Bradu and Kass data.
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Results Based on the Studentized Residuals and Proposed Residual Measure

(Rj)

The first column of Table 4.12 shows Rj values for the Hawkins, Bradu and Kass data.
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From the table, observations 1 to 13 are labelled as regression outliers, and the Rj value

for observation 14 is not greater than 2. The Studentized residuals indicate that the first

ten observations are regression outliers.

Table 4.12
Hawkins, Bradu and Kass data: Residuals

Rj r∗(i) Rj r∗(i) Rj r∗(i)

1 2.377∗ 2.427] 26 0.801 -0.599 51 0.746 -0.167
2 2.270∗ 2.543] 27 0.280 -0.570 52 0.264 -0.513
3 2.759∗ 2.600] 28 0.374 -0.282 53 0.219 -0.167
4 2.627∗ 2.370] 29 0.704 -0.282 54 1.170 -0.167
5 2.643∗ 2.514] 30 0.132 -0.455 55 1.017 -0.369
6 2.439∗ 2.514] 31 0.489 -0.369 56 0.994 -0.340
7 2.308∗ 2.744] 32 1.129 -0.484 57 0.615 -0.167
8 2.435∗ 2.600] 33 0.897 -0.541 58 0.832 -0.397
9 2.600∗ 2.398] 34 0.651 -0.570 59 0.426 -0.455
10 2.544∗ 2.485] 35 0.286 -0.282 60 0.373 -0.628
11 3.328∗ -0.426 36 0.556 -0.657 61 0.770 -0.455
12 4.068∗ -0.484 37 0.804 -0.541 62 0.701 -0.196
13 2.877∗ -0.167 38 0.838 -0.109 63 1.128 -0.455
14 1.683 -0.340 39 0.340 -0.570 64 0.445 -0.513
15 0.485 -0.484 40 0.887 -0.513 65 0.193 -0.196
16 0.773 -0.196 41 0.115 -0.397 66 0.959 -0.628
17 1.073 -0.426 42 0.417 -0.570 67 0.762 -0.570
18 0.448 -0.369 43 1.218 -0.196 68 0.616 -0.196
19 0.931 -0.340 44 0.063 -0.570 69 0.646 -0.311
20 0.611 -0.253 45 0.508 -0.513 70 0.537 -0.167
21 0.538 -0.109 46 0.109 -0.484 71 0.560 -0.311
22 0.967 -0.282 47 0.289 -0.628 72 0.820 -0.426
23 0.832 -0.599 48 0.143 -0.340 73 0.665 -0.253
24 0.990 -0.167 49 0.525 -0.109 74 0.879 -0.628
25 0.648 -0.455 50 0.506 -0.484 75 0.349 -0.311

∗ Rj > 2.
] r∗(i) >| 2 |.

Thus, using the procedure, we classify observations 1 to 14 as regression outliers, whilst

the Studentized residuals and Rj suggest that only observation 1 to 13 are regression

outliers.
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Example 2: Stack Loss Data

Recall that for this data set, six observations, observations 1, 2, 3, 4, 17 and 21 (or

combinations of) have been found to be outlying and/or influential.

Results Based on the Diagonal Values of Hz

The rl, cl, hz and DIST values for the Stack Loss data are shown in Table 4.13 and the

stem-and-leaf display is shown in Table 4.14.

Table 4.13
Stack Loss data: rl, cl, hz and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(74.94%) (18.35%) (5.38%) (1.33%) hi (74.94%) (18.35%) (5.38%) (1.33%) DIST

1 0.222∗ 0.045 0.017 0.028 0.312∗ 0.945∗ 0.047 0.005 0.002 0.705
2 0.183∗ 0.051 0.010 0.047 0.291∗ 0.929∗ 0.063 0.004 0.004 0.591
3 0.132∗ 0.006 0.022 0.083 0.243∗ 0.966∗ 0.012 0.011 0.011 0.410
4 0.024 0.011 0.042 0.186 0.263∗∗ 0.725 0.080 0.093 0.101 0.098
5 0.002 0.000 0.003 0.016 0.021 0.761 0.004 0.104 0.131 0.007
6 0.004 0.000 0.030 0.047 0.081 0.563 0.008 0.308 0.121 0.021
7 0.020 0.052 0.113 0.019 0.204] 0.485 0.309 0.197 0.008 0.123
8 0.022 0.049 0.108 0.004 0.183 0.526 0.287 0.185 0.002 0.125
9 0.000 0.000 0.107 0.041 0.148 0.013 0.006 0.897 0.085 0.026
10 0.026 0.036 0.096 0.004 0.162 0.628 0.207 0.163 0.002 0.126
11 0.008 0.047 0.050 0.041 0.146 0.321 0.494 0.154 0.031 0.070
12 0.015 0.040 0.116 0.041 0.212] 0.447 0.287 0.244 0.021 0.102
13 0.028 0.006 0.071 0.017 0.122 0.802 0.043 0.146 0.009 0.104
14 0.002 0.152 0.003 0.001 0.158 0.053 0.942 0.005 0.000 0.119
15 0.036 0.077 0.007 0.054 0.174 0.642 0.332 0.009 0.017 0.169
16 0.050 0.022 0.004 0.012 0.088 0.894 0.097 0.006 0.004 0.166
17 0.098∗ 0.262 0.002 0.016 0.378∗ 0.602∗ 0.396 0.001 0.002 0.486
18 0.064 0.038 0.011 0.000 0.113 0.863 0.126 0.011 0.000 0.223
19 0.047 0.032 0.050 0.000 0.129 0.804 0.134 0.062 0.000 0.175
20 0.012 0.020 0.000 0.011 0.043 0.705 0.284 0.000 0.011 0.053
21 0.005 0.053 0.139 0.332 0.529] 0.153 0.381 0.293 0.173 0.102
∗ hz large, rl > 0.095 and cl > 0.5.
∗∗ hz large, but rl < 0.067 and cl > 0.5 (or the reverse) on the kth axis.
] hz large, and rl > 0.095 on at least one axis but cl < 0.5 on all four axes.
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Table 4.14
Stack Loss data: Stem-and-leaf display of the hz values

stem | leaf observation
0 | 2 4 8 9
1 | 1 2 3 5 5 6 6 7 8
2 | 0 1 4 6 9 7, 12, 3, 4, 2
3 | 1 9 1 17
4 |
5 | 3 21

The decimal point is 1 digit to the left of the |.

From the tables, observations 1, 2, 3, 4, 7, 12, 17 and 21 have large hz values. Observa-

tions 1, 2, 3 and 17 determine the direction of and are well explained by the first axis;

observation 4 determines the direction of the fourth axis, but is well explained by the first

axis, and observations 7, 12 and 21 are not explained well by any of the four axes, but are

responsible for determining the direction of the at least one axes. This indicates that the

three observations do not fit the structure of the bulk of the data, and we will therefore

treat the observations as outliers. The only observations that are large contributors to

the total variance (that is, located far from the origin) are observations 1, 2, 3 and 17.

From Figure 4.8, observations 1, 2, 3 and 17 which have large hz values, are also located

far from the origin. Observation 4 appears to be swamped because it has a large hz value

but is not located far from the origin relative to other observations that are located on

the first axis.
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Figure 4.8: L-D plot for the Stack Loss data.
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Results Based on the Studentized Residuals and Proposed Residual Measure

(Rj)

The first column of Table 4.15 shows values of Rj and the Studentized residuals are shown

on the second column. From the table, we see that observations 1 and 2 haveRj values that

are greater that 2, and the value of Rj for observation 3 suggests that the observation is

making a more-than-average contribution to the residuals of other observations, therefore

we will consider the observation to be a regression outlier.

Values of the Studentized residuals, r∗(i), for the Stack Loss data are shown in the second

column in Table 4.15. The Studentized residuals indicate the presence of only one outlier

in the data set, observation 1, since it has a Studentized residual value greater than 2.

However, the values of observations 2 and 3 suggest that the observations are possible

regression outliers since their values are close to 2.
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Table 4.15
Stack Loss data: Residuals

Rj r∗(i)

1 2.316∗ 2.466]

2 2.486∗ 1.962
3 1.919 1.962
4 0.607 1.055
5 0.336 0.048
6 0.536 0.048
7 0.557 0.149
8 0.531 0.250
9 0.132 −0.254
10 0.655 −0.355
11 0.890 −0.355
12 1.008 −0.456
13 0.674 −0.657
14 0.710 −0.557
15 1.621 −0.959
16 1.625 −1.060
17 0.699 −0.959
18 1.233 −0.959
19 1.054 −0.859
20 0.594 −0.254
21 0.819 −0.254
∗ Rj > 2.
] r∗(i) >| 2 |.

Thus, when we use the procedure, we classify observations 1, 2, 3, 7, 12, 17 and 21 as

regression outliers, whilst the Studentized residuals and Rj classify observation 1, 2 and

3 as the only regression outliers.
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Example 3: Health Club Data

Results Based on the Diagonal Values of Hz

The rl, cl, hz and DIST values for the Health Club data are shown in Table 4.16, and the

stem-and-leaf display is shown in Table 4.17.

Table 4.16
Health Club data: rl, cl, hz and DIST values
rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5

(61.14%) (25.33%) (25.33%) (9.25%) (4.28%) hi (61.14%) (25.33%) (25.33%) (9.25%) (4.28%) DIST

1 0.102∗ 0.016 0.012 0.069 0.037 0.236∗ 0.892∗ 0.045 0.015 0.041 0.007 0.371

2 0.040 0.023 0.014 0.024 0.006 0.107 0.785 0.143 0.037 0.032 0.003 0.166

3 0.010 0.011 0.001 0.016 0.033 0.071 0.653 0.220 0.008 0.072 0.047 0.049

4 0.011 0.003 0.035 0.000 0.008 0.057 0.649 0.049 0.292 0.001 0.010 0.054

5 0.001 0.022 0.012 0.007 0.018 0.060 0.086 0.662 0.165 0.048 0.039 0.033

6 0.017 0.042 0.006 0.003 0.011 0.079 0.535 0.424 0.026 0.007 0.007 0.101

7 0.004 0.027 0.004 0.000 0.060 0.095 0.287 0.584 0.039 0.001 0.088 0.048

8 0.033 0.162∗ 0.000 0.000 0.088 0.283∗ 0.380 0.597∗ 0.000 0.000 0.022 0.279

9 0.035 0.061 0.010 0.000 0.027 0.133 0.619 0.345 0.025 0.000 0.011 0.180

10 0.001 0.078 0.008 0.027 0.041 0.155 0.027 0.843 0.037 0.063 0.030 0.095

11 0.017 0.018 0.025 0.072 0.103 0.235∗∗ 0.506 0.171 0.103 0.151 0.069 0.106

12 0.011 0.047 0.003 0.000 0.015 0.076 0.425 0.548 0.014 0.001 0.012 0.087

13 0.026 0.192∗ 0.045 0.000 0.003 0.266∗ 0.278 0.655∗ 0.066 0.000 0.001 0.301

14 0.020 0.002 0.070 0.001 0.059 0.152 0.631 0.017 0.309 0.002 0.041 0.100

15 0.018 0.005 0.005 0.002 0.025 0.055 0.862 0.075 0.031 0.007 0.026 0.068

16 0.031 0.018 0.128 0.036 0.001 0.214∗∗ 0.547 0.101 0.309 0.043 0.000 0.185

17 0.009 0.006 0.230∗ 0.013 0.009 0.267∗ 0.212 0.041 0.722∗ 0.020 0.004 0.142

18 0.063 0.015 0.007 0.089 0.023 0.197∗∗ 0.835 0.065 0.012 0.081 0.007 0.243

19 0.004 0.001 0.011 0.002 0.007 0.025 0.617 0.072 0.264 0.021 0.026 0.019

20 0.052 0.004 0.009 0.018 0.000 0.083 0.933 0.024 0.021 0.022 0.000 0.181

21 0.007 0.020 0.085 0.015 0.056 0.183 0.246 0.234 0.435 0.038 0.046 0.086

22 0.065 0.005 0.027 0.001 0.001 0.099 0.924 0.022 0.052 0.001 0.000 0.229

23 0.204∗ 0.154 0.002 0.133 0.003 0.496∗ 0.778∗ 0.186 0.001 0.035 0.000 0.849

24 0.088 0.000 0.001 0.024 0.000 0.113 0.979 0.001 0.001 0.018 0.000 0.292

25 0.013 0.000 0.040 0.008 0.058 0.119 0.636 0.000 0.274 0.027 0.063 0.065

26 0.026 0.002 0.001 0.007 0.054 0.090 0.915 0.021 0.006 0.016 0.042 0.090

27 0.000 0.050 0.021 0.071 0.011 0.153 0.012 0.657 0.118 0.202 0.010 0.078

28 0.044 0.003 0.040 0.326 0.016 0.429∗∗ 0.602 0.015 0.075 0.304 0.005 0.238

29 0.044 0.001 0.084 0.034 0.001 0.164 0.756 0.005 0.198 0.040 0.000 0.189

30 0.005 0.013 0.065 0.000 0.225 0.308] 0.221 0.176 0.390 0.000 0.213 0.074
∗ hz large, rl > 0.067 and cl > 0.5.
] hz large, and rl > 0.067 on one of the axis but cl < 0.5 on all five axes.
∗∗ hz large, but rl < 0.067 and cl > 0.5 (or the reverse) on the kth axis.
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Table 4.17
Health Club data: Stem-and-leaf display of the hz values

stem | leaf observation
0 | 3 6 6 6 7 8 8 8 9
1 | 0 0 1 1 2 3 5 5 5 6 8
2 | 0 1 3 4 7 7 8 18, 16, 11, 1, 13, 17, 8
3 | 1 30
4 | 3 28
5 | 0 23

The decimal point is 1 digit to the left of the |.

From the tables, observations 1, 8, 11, 13, 16, 17, 18, 23, 28 and 30 have large hz values.

Observations 1 and 23 determine the direction of and are well explained by the first axis;

observations 8 and 13 determine the direction of and are well explained by the second

axis; observation 17 determines the direction of and is well explained by the third axis;

observations 11, 16, 18 and 28 do not determine the direction of the axis whose direction

they are located in. Observation 30 has a large hz value but is not explained well by any

one of the five axes. Of these observations with large hz values, observations 1, 8, 13 and

23 contribute the most towards the total variance.

From Figure 4.9, we see that observations 1, 8, 13, 23 and 24 are located relatively far

from the origin; observations 11 and 16, which are located in the direction of the first

axis, are not located far from the origin, thus these observations appear to be swamped;

observations 18 and 28, which are also located in the direction of the first axis, are

borderline cases, thus will also treat these observations as outliers. Observation 30 does

not lie in the direction of any axis, hence does not fit the structure of the bulk of the

data, and we will therefore treat this observation as an outlier.

Notice that observation 24 has a low hz value, but is located far from the origin, thus this

observation appears to be masked.

4-25



Identifying Outlying Observations in the Residuals

Figure 4.9: L-D plot for the Health Club data.
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Results Based on the Studentized Residuals and Proposed Residual Measure

(Rj)

Table 4.18 shows Rj and r∗(i) values for the Health Club data. None of the observations

are regression outliers according to these two measures, although the value of Rj for

observation 24 suggests that the observation is making a more-than-average contribution

to the residuals of other observations, therefore we will consider the observation to be a

regression outlier.
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Table 4.18
Health Club data: Residuals

Rj r∗(i)

1 1.412 1.612
2 1.169 −1.156
3 1.026 −0.482
4 0.617 −0.204
5 0.695 0.367
6 1.262 0.850
7 0.130 −0.380
8 0.761 1.436
9 1.462 0.792
10 0.502 −0.189
11 1.108 0.323
12 0.819 −0.365
13 1.336 −1.346
14 1.591 −0.878
15 1.032 0.440
16 1.397 −1.522
17 0.145 0.484
18 1.076 1.041
19 0.390 −0.043
20 1.373 −1.112
21 0.564 0.294
22 1.778 −1.566
23 1.695 1.670
24 1.919 1.612
25 0.814 0.045
26 0.667 −0.907
27 0.500 −0.058
28 0.512 1.436
29 1.656 −1.742
30 0.595 −0.482

4.6 Discussion and Summary

In this chapter, we considered the response variable, y, in determining the observations

that deviate from the bulk of the data. Observations that deviate from the bulk of the

data are known to easily influence the fit of the regression line, and the residuals, which

take the response variable into account, are often examined to determine the observations
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that may have influenced the fit of the regression line, hence affecting the regression co-

efficients.

The least squares method works by minimising the sum of squared deviations from the

fitted line, and large deviations are often accommodated at the expense of less deviating

observations. Thus, the existing diagnostic measures that are based on the residuals in-

tended to detect regression outliers, may fail to reveal some outliers because observations

that deviate from the bulk of the data may have small residuals since they may have

pulled the fitted regression line in their direction.

We briefly reviewed the use of the Studentized residuals, which are transformed residuals

which have been standardised to have equal variances. The Studentized residuals work

well when the outlying observations are not being accommodated by the least squares

fit, but may fail to highlight the regression outliers when these observations are being

accommodated by the least squares fit. The Studentized residuals may also suffer from

the effects of masking and swamping, as the artificial data set in example 2 demonstrated.

We also extended the procedure that was proposed in Chapter 3 to the diagonal values

of the Hz matrix. Using the L-D plot has proven to be informative in highlighting ob-

servations that may be masked or swamped. The one drawback of using the proposed

procedure which we have mentioned already in Chapter 3, is that too many observations

may be declared incorrectly as regression outliers because observations with large hz val-

ues that are not explained well by any axis are automatically treated as leverage points

if they contribute highly to the determination of the direction of at least one of the axes.

Another potential drawback with using the diagonal values of the Hz matrix is that we

are not able to differentiate between leverage points and regression outliers, since hz may

be large because of a large hi value and/or a large residual value.

The proposed measure, Rj, which should be used in conjunction with the Studentized

residuals (or other transformed residuals), differs from existing measures in that it pro-

vides insight into the role that each observation plays in determining the displacement of

other observations from the least squares fit.

We suggested a guideline to determine a large value of Rj (Rj > 2), and found the ob-

servations flagged as regression outliers by Rj and the Studentized residuals on the real

data sets to be similar, except in the Health Club data set, where observation 24, which

we found to be masked in Chapter 3, is flagged as a potential regression outlier by Rj,

but the observation is not flagged by the Studentized residuals.

For the Hawkins, Bradu and Kass data set, the first 13 observations, which are known
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leverage points were flagged as regression outliers using our proposed measure, Rj, even

though only the first 10 observations are known to be regression outliers. This is a poten-

tial drawback with using Rj when observations are clustered nearly in the same area. As

already pointed out in Chapter 3, a large hij value also indicates that observation i and

observation j are situated on “the same side of the bulk of the cases nearly on the same

line away from the centroid of the cases” (Gray and Ling, 1984). Thus leverage points

that are located in the same area but far from the origin, and also lie in the direction of

the fitted line may also be flagged as regression outliers when using Rj.

The two measures and the procedure based on the diagonal values of the Hz matrix ap-

pear to offer valuable insight into the nature of outlyingness of the observations, thus we

recommend the use of all three measures in determining regression outliers. The proce-

dure based on the diagonal values of the Hz matrix to determine the outliers and whether

any observations are masked or swamped, and then Rj and the Studentized residuals to

determine the real regression outliers.

Table 4.19 presents a summary of the observations that were identified as regression out-

liers, in each of the real data sets.

Table 4.19
Summary of regression outliers

Data Regression Outliers

HBK 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Stack Loss 1, 2, 3
Health Club 24

In the next chapter, a diagnostic measure is proposed to determine which of the outlying

observations identified in this chapter influence the regression coefficients.
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Chapter 5

Identifying Influential Observations

The regression estimates such as the coefficients, are known to be easily affected by outlying
observations, and in this chapter, we propose a measure which highlights the regression outliers
identified in the preceding chapter that have a disproportionate effect on the individual regression
coefficients.

Once again, we consider an existing measure, DFBETAS, that is intended to also measure the
impact of an observation on the individual regression coefficients, and use the artificial data
set used in Chapter 4 to illustrate the problems encountered when using the DFBETAS. The
proposed measure appears to work well in identifying influential observations.
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5.1 Introduction

The measures presented in the preceding two chapters to identify leverage points and re-

gression outliers draw to our attention the observations that deviate from the bulk of the

data, but fail to point out observations that are influential. Observations are said to be

influential if they have a disproportionate effect on the estimated regression coefficients.

Note that both leverage points and regression outliers need not be influential, and if they

are influential, they need not influence all the regression quantities equally (Chatterjee

and Hadi, 1986a).

In this chapter, an influence measure is proposed that measures the impact of an obser-

vation on the individual regression coefficients (refer to Chatterjee and Hadi (1986a) for

a classification of ‘influence’ measures). In the next section, the diagnostic measure is

presented. In section 5.3, we briefly review the use of the DFBETAS, an existing measure

that determines the impact of an observation on the individual regression coefficients in

identifying influential observations, and use the same artificial data set used in Chapter 4

to illustrate the problems encountered when using the DFBETAS. We then consider the

same three real data sets that we have used in the preceding two chapters in section 5.4,

and end the chapter with a discussion of the main findings of the results presented in the

chapter.

5.2 The Diagnostic for Identifying Influential Observations

Let X = UDαV
T be the SVD of the standardised matrix X. The regression coefficients

are given by

β̂ = (XTX)−1XTy = VD−1
α UTy

We can express the jth regression coefficient as

β̂j =
n∑
i=1

m∑
k=1

vjkuikyi
αk

=
m∑
k=1

vjk
αk

[
n∑
i=1

uikyi

]

=
n∑
i=1

yi

[
m∑
k=1

vjkuik
αk

]
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The sum
m∑
k=1

vjkuik
αk

(≡ aij)

depends on X alone. It may thus be interpreted as a measure of influence of the ith

observation on the jth regression coefficient.

The quantity yiaij is the contribution which the ith observation makes to the jth regres-

sion coefficient. Note that the final value of β̂j is the sum of the yiaij over all i observations

(for i = 1, 2 . . . , n). Thus each observation has an influence, small or large, in the de-

termination of β̂j. This decomposition of β̂j enables us to examine each observation in

relation to each β̂j. Thus quantities helpful in this analysis are

| yiaij |
n∑
i=1

| yiaij |
and Bij =

n× | yiaij |
n∑
i=1

| yiaij |

The former measures the proportional absolute contribution of observation i to β̂j, and the

latter is an easy-to-interpret statistic — for a given coefficient, large values of Bij indicate

a disproportionate contribution by an observation in the determination of the coefficient.

Thus, if all observations contribute equally to the coefficient, then Bij will equal 1. Values

of Bij greater than 1 therefore indicate that an observation makes a more-than-average

contribution to the coefficient. As a crude cut-off value, we will consider all observations

which have Bij values greater than 2 to be influential on the jth coefficient.

5.3 DFBETAS

An existing measure that is intended to assess the impact of deleting the ith observation

on the jth coefficient is DFBETAS (Belsley et al., 1980) which is given by

Dij(i) =
β̂j − β̂j(i)
Var(β̂j)

=
ε̂i

σ̂(i)(1− hi)

cji√√√√ n∑
k=1

c2
jk

where C = (XTX)−1XT.

Values of Dij(i) may be positive or negative, with a positive value indicating that the

deletion of the ith observation results in a smaller coefficient, whilst a negative value
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indicates that the deletion of the ith observation results in a larger coefficient.

The drawback to using DFBETAS as diagnostics is that they are a function of the residuals

which are a poor measure of fit, and the diagonal values of the hat matrix, hi, which are

affected by the masking and swapping effects. Therefore the DFBETAS are also prone to

the same problems as the Studentized residuals and the diagonal values of the hat matrix

(Rousseeuw and Leroy, 1987). Observations for which Dij(i) values exceed | 2/
√
n | are

generally said to influence the jth coefficient(s) (Belsley et al., 1980).

The following examples, based on the same artificial data that we used in Chapter 4,

will be used to illustrate the similarities and differences in the results obtained using the

DFBETAS and the proposed measure. (Note that all computations were performed in

R (R Development Core Team, 2008), and the source codes written for the measure are

included in Appendix C, section C.3 (p. C-3).)

Example 1

Recall that for the first example, observation 14 is both a leverage point and a regression

outlier that is not accommodated excessively by the least squares fit at the expense of

the other non-outlying observations. Figures 4.1(a) and 4.1(b) have been reproduced in

Figures 5.1(a) and 5.1(b).

Figure 5.1: Example 1 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)
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Table 5.1 shows Bij and DFBETAS values for this data set. From the table, we see that

observation 14 has a large Bij value on the second coefficient, although the Bij value on

the first coefficient is also considerably large. Observation 14 also has large DFBETAS

values on both coefficients.

Table 5.1
Bij and DFBETAS values for Example 1

Bij DFBETAS
X1 X2 X1 X2

1 1.017 0.824 −0.041 −0.022
2 2.023 0.339 0.041 0.005
3 2.332 1.599 0.274 −0.123
4 1.830 1.058 −0.029 −0.011
5 1.448 1.457 −0.023 −0.015
6 0.882 1.437 0.256 −0.273
7 0.005 0.015 0.006 −0.011
8 0.848 0.139 0.106 −0.011
9 0.007 0.023 0.078 −0.158

10 0.024 0.086 0.162 −0.385
11 0.076 0.682 0.055 −0.323
12 0.011 0.206 0.001 −0.010
13 0.147 1.371 0.046 −0.279
14 1.762 2.867∗ −8.458] 9.005]

15 0.761 2.388 −0.016 −0.033
16 0.340 0.730 0.223 −0.314
17 0.653 1.047 0.018 0.019
18 1.840 1.104 0.143 0.056
19 1.963 1.782 0.146 0.086
20 2.032 0.845 0.330 −0.090

∗ Bij > 2
] DFBETAS > | 0.447 |

Example 2

For the second example, observations 14, 16, 18 and 19 are leverage points, and observa-

tions 18 and 19 have been modified to be regression outliers. Figures 4.2(a) and 4.2(b),

which illustrate that the two observations are being accommodated by the least squares

fit at the expense of other non-outlying observations (although their residuals are still

large), have been reproduced below in Figures 5.2(a) and 5.2(b).
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Figure 5.2: Example 2 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)

Table 5.2 shows Bij and DFBETAS values for this data set. From the table, we see that

both observations 18 and 19 have large Bij and DFBETAS values on the first coefficient.
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Table 5.2
Bij and DFBETAS values for Example 2

Bij DFBETAS
X1 X2 X1 X2

1 0.857 0.886 0.055 0.035
2 1.726 0.397 0.187 0.027
3 2.169 1.742 0.320 −0.160
4 1.498 1.186 0.141 0.070
5 1.151 1.608 0.103 0.090
6 0.946 1.616 0.150 −0.160
7 0.010 0.005 −0.014 −0.004
8 0.811 0.191 0.093 −0.014
9 0.010 0.027 −0.033 0.055

10 0.021 0.089 0.102 −0.272
11 0.080 0.718 0.030 −0.170
12 0.074 0.261 −0.031 0.068
13 0.360 1.594 −0.070 0.193
14 1.232 2.184 −0.040 0.044
15 0.075 2.922 0.017 0.404
16 0.621 1.425 0.140 −0.200
17 0.192 1.373 0.046 0.206
18 3.389∗ 0.195 −1.082] 0.039
19 3.401∗ 1.012 −1.024] −0.190
20 1.379 0.570 0.399 −0.103

∗ Bij > 2
] DFBETAS > | 0.447 |

Example 3

For the third example, recall that observations 18, 19 and 20 have been modified to be

regression outliers that are accommodated by the least squares fit at the expense of other

non-outlying observations, and observations 19 and 20 have small Studentized residuals,

whilst observation 20 is masked as seen from the L-D plot in Figure 4.6. Figures 4.3(a)

and 4.3(b) have been reproduced in Figures 5.3(a) and 5.3(b).
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Figure 5.3: Example 3 – (a) 3-Dimensional scatter plot of two explanatory variables and the response
variable. (b) The best linear least squares fit

(a) (b)

Table 5.2 shows Bij and DFBETAS values for this data set. From the table, we see that

observation 18 has largeBij and DFBETAS values on both coefficients, whilst observations

19 and 20 have large Bij values on the first coefficient only. Both observations (19 and

20) have small DFBETAS values on both coefficients. Thus the two observations (19 and

20), which also have small Studentized residuals, do not have large DFBETAS.
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Table 5.3
Bij and DFBETAS values for Example 3

Bij DFBETAS
X1 X2 X1 X2

1 0.389 0.955 0.034 0.066
2 1.363 0.258 0.168 0.025
3 2.608 2.136 0.364 −0.233
4 0.885 1.119 0.101 0.100
5 0.414 1.639 0.046 0.141
6 1.340 1.684 0.194 −0.191
7 0.008 0.037 0.010 −0.036
8 0.712 0.144 0.081 −0.013
9 0.017 0.026 −0.071 0.086

10 0.056 0.111 0.235 −0.362
11 0.367 0.862 0.099 −0.181
12 0.112 0.187 −0.047 0.062
13 0.766 1.485 −0.189 0.286
14 0.489 0.637 0.168 −0.171
15 0.597 2.294 −0.140 0.421
16 0.581 0.991 0.327 −0.436
17 0.040 0.838 −0.010 0.161
18 4.809∗ 2.868∗ −1.252] 0.584]

19 2.432∗ 1.318 −0.351 −0.149
20 2.014∗ 0.412 −0.222 −0.036

∗ Bij > 2
] DFBETAS > | 0.447 |

5.4 Illustrative Examples

Example 1: Hawkins, Bradu and Kass Data

Recall that for the Hawkins, Bradu and Kass data set, the first 14 observations are clas-

sified as leverage points, with the first 10 observations also constructed to be regression

outliers. From Chapter 4, we classified the first 13 observations to be regression outliers

using Rj and the Studentized residuals (observations 11 to 13 have large Rj values). Table

5.4 shows Bij values for the HBK data. From the table, we see that the first 10 observa-

tions and observation 12 are flagged as having a disproportionate effect on at least one of

the coefficients.

Table 5.5 shows the values for DFBETAS for the HBK data set. Only observations 11 to

14, which have large hz values, have large DFBETAS values greater than | 0.231 | on at

least one coefficient. The coefficients affected can be seen from the table.
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Table 5.4
Hawkins, Bradu and Kass data – Influ-

ential observations (Bij)

X1 X2 X3

1 3.134∗ 1.987 1.025
2 1.028 0.178 2.151∗

3 2.559∗ 6.852∗ 4.977∗

4 2.917∗ 2.859∗ 5.412∗

5 0.025 3.296∗ 4.052∗

6 5.481∗ 1.608 0.501
7 4.257∗ 0.716 1.201
8 1.533 3.260∗ 2.985∗

9 2.825∗ 4.034∗ 6.122∗

10 3.790∗ 5.993∗ 8.029∗

11 0.434 0.377 0.869
12 0.038 2.172∗ 1.880
13 0.240 0.471 0.327
14 0.513 5.063 2.845
15 1.722 0.416 1.378
16 0.784 0.314 0.718
17 1.029 0.625 0.098
18 0.528 0.273 0.187
19 0.559 0.641 0.160
20 0.714 0.398 0.731
...

...
...

...

Table 5.5
Hawkins, Bradu and Kass Data – Influ-

ential observations (DFBETAS)

X1 X2 X3

1 0.115 −0.061 0.039
2 −0.043 0.006 0.092
3 0.079 −0.179 0.159
4 −0.084 −0.069 0.160
5 −0.001 −0.089 0.134
6 0.200 −0.049 −0.019
7 0.188 0.027 −0.054
8 0.060 −0.107 0.120
9 −0.085 −0.102 0.189
10 −0.125 −0.166 0.271
11 0.236 0.172 −0.486
12 −0.024 1.178 −1.247
13 −0.255 −0.420 0.356
14 0.329 −2.727 1.873
15 −0.061 −0.012 0.050
16 0.091 0.031 −0.086
17 −0.039 0.020 0.004
18 −0.014 0.006 0.005
19 −0.027 0.026 −0.008
20 0.024 0.011 −0.026
...

...
...

...

∗ Regression outlier, and Bij > 2.

Thus, for the HBK data, we observe an instance when the DFBETAS fail to correctly

identify the influential observations. Bij correctly identifies all influential observations

(including observation 12, which, because of the large Rj value, we would classify as

having a disproportionate effect on the second coefficient).

Example 2: Stack Loss Data

Recall that for the Stack Loss data set, only observations 1, 2 and 3 are classified as re-

gression outliers. Table 5.6 shows Bij values for the Stack Loss data. From the table, we

see that observations 1, 2, and 3 have a disproportionate effect on at least one coefficient.
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Table 5.6
Stack Loss Data – Influential observa-

tions (Bij)

Air. Water. Acid.
Flow Temp Conc.

1 4.287∗ 1.887 2.703∗

2 3.613∗ 1.501 2.866∗

3 2.705∗ 0.055 0.390
4 1.253 3.185 0.098
5 0.007 0.028 0.004
6 0.032 0.086 0.004
7 0.268 0.449 0.339
8 0.450 0.753 0.569
9 0.434 0.791 0.132
10 0.580 1.054 0.722
11 0.252 1.054 0.443
12 0.610 1.907 0.403
13 0.939 1.951 0.857
14 0.125 0.975 1.506
15 1.324 0.331 2.016
16 1.137 0.366 1.068
17 0.153 0.834 3.930
18 0.843 0.835 1.482
19 1.293 1.792 1.013
20 0.036 0.030 0.277
21 0.659 1.136 0.177

Table 5.7
Stack Loss Data – Influential observa-

tions (DFBETAS)

Air. Water. Acid.
Flow Temp Conc.

1 0.385 0.099 −0.202
2 −0.241 −0.059 0.159
3 0.379 −0.005 −0.045
4 −0.403 0.601 0.026
5 0.012 −0.029 −0.007
6 0.103 −0.165 −0.012
7 0.260 −0.255 −0.273
8 0.149 −0.147 −0.157
9 0.300 −0.320 −0.076
10 0.121 −0.128 −0.125
11 0.105 −0.258 0.154
12 0.226 −0.414 0.124
13 −0.113 0.138 0.086
14 0.001 0.003 −0.007
15 −0.190 −0.028 0.240
16 −0.052 −0.010 0.041
17 0.019 −0.060 0.403
18 0.022 −0.013 0.032
19 0.051 −0.041 0.033
20 −0.010 0.005 −0.065
21 −1.537 1.554 −0.344

∗ Regression outlier, and Bij > 2.

Table 5.7 shows the values for DFBETAS for the Stack Loss data set. None of the

regression outliers are flagged as influential, and only observations 4 and 21, which have

large hz values, have Dij(i) >| 0.436 | on at least one coefficient.

Example 3: Health Club Data

The third example that we consider is the Health Club data set. Recall that for these

data, observation 24 is the only regression outlier. Table 5.8 shows that the observation

is most influential on the first coefficient using Bij. The observation does not have a large

DFBETAS value on any of the coefficients (refer to Table 5.9), instead, a majority of the

observations with large hz values have Dij(i) >| 0.365 | on at least one coefficient.
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Table 5.8
Health Club Data – Influential observa-

tions (Bij)

X1 X2 X3 X4

1 2.326 0.015 3.139 3.220
2 1.109 1.709 0.619 0.700
3 0.640 0.053 0.582 0.107
4 0.078 0.273 0.031 0.149
5 0.316 0.197 0.535 0.210
6 0.616 0.131 1.071 0.647
7 0.119 0.114 0.466 0.216
8 0.893 3.434 0.569 1.112
9 0.492 1.179 0.638 0.139
10 0.130 0.311 0.050 0.119
11 0.877 0.175 0.380 0.520
12 0.195 0.483 0.114 0.123
13 0.399 0.579 2.663 2.664
14 0.661 1.633 1.110 1.688
15 0.407 0.046 0.062 0.124
16 2.726 4.746 2.302 2.118
17 0.215 1.427 0.933 0.953
18 1.990 2.257 1.860 1.364
19 0.001 0.034 0.009 0.008
20 1.351 0.379 0.060 0.649
21 0.068 0.674 0.131 0.189
22 1.085 1.690 0.340 1.814
23 1.805 1.468 4.760 3.514
24 2.379∗ 0.448 0.931 0.132
25 0.008 0.049 0.020 0.018
26 0.780 1.088 0.928 0.396
27 0.084 0.015 0.002 0.121
28 5.071 0.725 2.191 4.096
29 2.613 3.141 2.747 2.283
30 0.567 1.527 0.755 0.606

Table 5.9
Health Club Data – Influential ob-

servations (DFBETAS)

X1 X2 X3 X4

1 −0.196 −0.001 0.274 0.272
2 0.094 0.121 −0.054 −0.059
3 −0.118 −0.008 0.111 0.020
4 −0.031 −0.091 −0.013 0.059
5 −0.040 0.021 0.069 −0.026
6 −0.019 −0.004 0.035 −0.020
7 −0.052 0.042 0.211 −0.095
8 −0.182 0.589 −0.120 0.228
9 −0.071 −0.142 0.095 −0.020
10 0.138 −0.277 0.055 −0.127
11 −0.573 0.096 0.257 0.341
12 −0.043 0.088 −0.026 −0.027
13 0.012 0.014 −0.081 0.078
14 −0.095 0.196 0.164 −0.242
15 −0.092 0.009 0.015 0.028
16 0.212 −0.310 −0.185 0.165
17 0.096 −0.536 −0.432 0.428
18 −0.090 0.085 0.087 0.062
19 0.001 −0.053 −0.017 0.015
20 0.041 0.010 −0.002 −0.020
21 0.060 −0.499 −0.12 0.167
22 0.058 −0.076 −0.02 0.098
23 0.190 0.130 −0.518 −0.370
24 0.076 0.012 −0.031 −0.004
25 −0.038 −0.203 −0.103 0.090
26 −0.130 0.152 0.160 0.066
27 0.168 −0.026 0.005 −0.245
28 1.160 0.139 −0.519 −0.940
29 0.237 −0.239 −0.258 0.208
30 −0.429 0.970 0.591 −0.459

∗ Regression outlier, and Bij > 2.

5.5 Discussion and Summary

The regression quantities such as the coefficients, are known to be easily affected by

outlying observations. In this chapter, we proposed a measure, Bij, that may be used
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to identify the regression outliers that have a disproportionate effect on the individual

regression coefficients. The Bij values however do not tell us the actual impact the

observation has on the estimation of the coefficient(s).

We compared Bij to DFBETAS, an existing measure that determines the impact of an

observation on the individual regression coefficients. The DFBETAS are a function of the

residuals which are a poor measure of fit, and the diagonal values of the hat matrix, hi,

hence will suffer from the effects of masking and swamping like the Studentized residuals.

The artificial data sets illustrated instances when the DFBETAS give accurate results,

and instances when the DFBETAS give inaccurate results. For the real data sets, the

DFBETAS failed to correctly identify any of the suspected regression outliers as being

influential on the regression coefficients.

Table 5.10 presents a summary of the influential observations.

Table 5.10
Summary of influential observations

Data Observations

HBK 1, 2, 3, 4, 5, 6, 7, 8, 9 ,10, 12
Stack Loss 1, 2, 3
Health Club 24

In the next chapter, measures for detecting the presence of collinear relationships among

the explanatory variables are presented.
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Chapter 6

Identifying Collinear Variables

Collinearity is a term used to denote the presence of linear relationships or ‘near’ linear relation-
ships among the explanatory variables in regression analysis, and is known to have an adverse
effect on the regression coefficients. A number of approaches have been proposed to identify the
explanatory variables that are involved in collinear relationships, and to detect the coefficients
that are most adversely affected. Two approaches that we consider in this chapter are exam-
ining the magnitude of the eigenvectors of XTX that correspond to small singular values, and
decomposing the regression coefficients and examining the magnitude of the coefficient values
that correspond to small singular values. The labelling of values as ‘large’ is arbitrary in both
approaches, and in this chapter we develop a means of quantifying the meaning of ‘large’ for
both methods.

Two real examples that have appeared in the literature are used to illustrate the operation of
the proposed thresholds.
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6.1 Introduction

Collinearity is a term used to denote the presence of linear relationships or ‘near’ lin-

ear relationships among the explanatory variables in regression analysis (Silvey, 1969).

Collinearity is therefore a problem of the X matrix. Collinearity is known to have an

adverse effect on the regression coefficients, in particular, the regression coefficients may

be too large and have the wrong signs, and the variances of the coefficients tend to be

much larger for the explanatory variables involved in collinear relationships than for un-

correlated explanatory variables (Gunst and Mason, 1980).

It is well known that collinearities reveal themselves by having singular values (αk’s) that

are close to zero (refer to Belsley et al. (1980), Mandel (1982), and Hawkins and Fatti

(1984)). Measures for detecting the presence of collinearity in the X matrix have been

developed as a result of trying to understand the extent of collinearity in the X matrix,

which variables are involved in the collinearity, and the extent to which the regression

coefficients have been affected by the presence of collinearity. These include using inter

alia:

Variance-inflation factors (VIFs): A variance-inflation factor indicates how much

larger the variance of the coefficient estimate, var(β̂j), will be for “collinear data than

for orthogonal data – where each VIF is 1.0” (Mansfield and Helms, 1982).

If we let X = UDαV
T be the SVD of the n×m standardised matrix X, of rank k, where

n ≥ m and therefore k = m (that is, we assume that X is of full column rank), then the

variance-inflation factor for the jth variable is (Walker, 1989):

VIF(j) =
m∑
k=1

v2
jk

α2
k

VIF(j) values greater that 10 are regarded as indicating the existence of collinearity among

the explanatory variables.

Condition indices: A condition index (ηk = α1/αk) is used to identify the presence and

strength of collinearity among the explanatory variables. Belsley et al. (1980) suggested

that a condition index of between 5 and 10 indicates weak collinearity, and a condition

index between 30 and 100 indicates moderate to strong collinearity. Thus, the stronger

the collinearity among the explanatory variables, the higher the condition index.
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Variance-decomposition proportions (VDPs): Variance-decomposition proportions mea-

sure the proportion of variance in the regression coefficients that is accounted for by each

axis. The variance-decomposition proportion for the jth variable is given by:

VDP(j) =
v2
jk/α

2
k

m∑
k=1

(v2
jk/α

2
k)

Belsley et al. (1980) recommended that values greater than 0.5 be used as a threshold

for identifying variables that are involved in the collinearity for an axis associated with a

large condition index. However Belsley (1982) cautioned against the use of this threshold

“when a given variate is involved in several coexisting near dependencies, for its variance-

decomposition proportions can then be distributed across the VDP(j)’s so that all are

relatively small”.

Eigenvalues: A small eigenvalue (α2
k) of the XTX matrix, is used to indicate the

presence and strength of collinearity in a data set. Hocking (2003) suggested that if the

smallest eigenvalue is less than 0.05, then this indicates serious collinearity, and if the

smallest eigenvalue is less than 0.10, then this indicates moderate collinearity.

Large values of the eigenvectors of XTX (or the right singular vectors) that are associated

with the small eigenvalues are used to indicate the number of explanatory variables that

are involved in the collinearity and the nature of collinearity among the explanatory

variables. The labelling of values as ‘large’ however is arbitrary, and in this chapter,

we develop a means of quantifying the meaning of ‘large’ for values of the eigenvectors of

XTX (or right singular vectors) that are associated with near-zero eigenvalues (or singular

values).

Another approach that may be used to indicate the variables that are involved in the

collinearity is that of decomposing the regression coefficients. Large coefficient values

that are associated with near-zero singular values are used to indicate the variables that

are involved in the collinearity. The labelling of values as ‘large’ however is also arbitrary,

and we develop a means of quantifying the meaning of ‘large’ for the coefficient values

that are associated with near-zero singular values.

This chapter is organised as follows. In section 6.2, we consider a measure that is based on

the values of the eigenvectors of XTX, and develop a means of quantifying the meaning

of a ‘large’ eigenvector of XTX that is based on the values of the squared right singular

vectors, using the decomposition of variance of the columns of the X matrix presented in
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Chapter 2. In section 6.3, we also develop a means of quantifying the meaning of ‘large’

for coefficient values that are associated with near-zero singular values. In both sections

6.2 and 6.3, computations of the thresholds on two real data sets are also provided to

illustrate their use. We then briefly mention collinear-influential observations in section

6.4, and end the chapter with a discussion of the main findings of the results presented

in the chapter.

6.2 Using the Eigenvectors of XTX to Identify the Variables

that are Involved in the Collinearity

In this section, we consider the values of the eigenvectors of XTX, and develop a means of

quantifying the meaning of a ‘large’ eigenvector that is based on the values of the squared

right singular vectors, to identify the explanatory variables that are involved in collinear

relationships.

Recall from Chapter 2 that,

g2
jk

m∑
j=1

g2
jk

= v2
jk for all j = 1, 2, . . . ,m (6.1)

is the proportion of the variance due to the kth principal axis that is explained by the

jth variable, or the contribution the jth variable makes to the kth principal axis. The j

variables involved in the collinearity will be those that have large values for (6.1) when

αk is near-zero. This is because

Xgk = Xvkαk = ukα
2
k

i.e. Xvk = ukαk

and since

αk ≈ 0, Xvk ≈ 0

That is,
m∑
k=1

xikvjk ≈ 0 for i = 1, 2, . . . , n

There is thus a linear combination of columns of X which is near-zero, implying a collinear-

ity. That is, collinearity involves those columns for which the vjk (and hence gjk) are

relatively large when αk is near-zero.
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A large value for (6.1), a value of the squared right singular vector, implies that the kth

axis is, to a large extent, determined by (or dominated by) the jth variable. If an axis

is determined equally by all the variables, then this statistic will average 1/m. Therefore

we recommend that values greater than 2/m be used to identify variables that dominate

a particular axis.

Notice that this method of identifying the explanatory variables that are involved in the

collinearity is equivalent to that of examining the magnitude of the values of the eigenvec-

tors of XTX, that are associated with near-zero singular values or near-zero eigenvalues.

An advantage of using the eigenvectors of XTX to identify the explanatory variables that

are involved in the collinearity is that the nature of relationship between the collinear

variables can be determined, since Xvk ≈ 0, and writing this equation in terms of the

unscaled variables identifies the relationships (Hocking, 2003).

A disadvantage of using the eigenvectors of XTX that are associated with near-zero singu-

lar values to identify the explanatory variables that are involved in collinear relationships

is that the labelling of values as ‘large’ is arbitrary. Note though that as a consequence

of using the proposed threshold of 2/m for values of the squared right singular vectors to

identify the explanatory variables that are involved in the collinearity when αk is near-

zero, we are able to recommend a threshold that may be used for the eigenvectors of XTX.

Since the proposed threshold of 2/m is for values of the squared right singular vectors,

we will consider values of the eigenvectors of XTX to be ‘large’ if they exceed |
√

2/m |.

Note that the threshold of 2/m (or |
√

2/m | for the eigenvectors of XTX) should be ap-

plied when the explanatory variables are involved in single dependencies. For explanatory

variables involved in multiple dependencies, the threshold should be lowered as the pro-

portion of the variance attributable to the jth explanatory variable may be distributed

across multiple principal axes (that is, variable j determines the direction of multiple

axes), or vjk may be small because one or more of the explanatory variables that are in-

volved in the multiple dependency may be orthogonal to another explanatory variable(s)

involved in the same dependency (refer to Belsley and Klema (1974) for a discussion on

this topic).

Condition indices (ηk = α1/αk’s) will be used to identify the presence and strength of

collinearities in the X matrix. Thus the two or more explanatory variables that are in-

volved in the collinearity will be those variables that have large values of the squared right

singular vectors (or the eigenvectors of XTX) on an axis (or axes) with a large condition

index (or indices).
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6.2.1 Illustrative Examples

In the examples that follow, all computations were performed in R (R Development Core

Team, 2008), and the source codes written for each measure are included in Appendix C,

section C.4 (p. C-4).

Example 1: Mason and Gunst Data

The first data set that we consider is the Mason and Gunst data set, found in Gunst

and Mason (1980), Appendix A, p. 358, and has been reproduced in Appendix A, p. A-6.

The data set is a compilation of entries from a much larger database from data set 31 of

Loether, McTavish and Voxland (1975, cited in Gunst and Mason (1980)), and consists of

one response variable, gross national product per capita, 1957, U.S. Dollars (GNP), and

six explanatory variables: infant deaths per 1000 live births (INFD); number of inhab-

itants per physician (PHYS); population per square kilometre (DENS); population per

1000 hectares of agricultural land (AGDS); percentage literate of population aged 15 and

over (LIT), and students enrolled in higher education per 100000 population (HIED).

Mason and Gunst (1985a) observed collinearity between DENS and AGDS, using the

smallest eigenvalue (= 0.027) of the correlation matrix of the explanatory variables, the

values on the corresponding eigenvector, and variance inflation factors. Walker (1989)

and Hadi (1988) have also analysed the same data set and obtained results similar to

those obtained by Mason and Gunst (1985a).

When we re-examined the data using the squared right singular vectors, the condition in-

dex corresponding to the smallest singular value indicated the presence of weak collinearity

in the data set (refer to Table 6.1). Table 6.1 shows the singular values, condition indices,

values of the squared right singular vectors for each axis, and the values of the eigenvec-

tors of XTX (in square brackets). Since the last axis indicates the presence of collinearity,

with a condition index of 9.651, we will only consider this axis in the interpretation of

results that follow.

From Table 6.1, we identify collinearity between DENS and AGDS as the values of the

squared right singular vector exceed 2/m = 0.333, and the two explanatory variables

together explain nearly all of the variance (0.499 + 0.500 = 0.999 or 99.9%) due to the

last axis. The eigenvectors of XTX also identify collinearity between DENS and AGDS,

since the values of the right singular vector exceed |
√

2/m |= 0.577.
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Table 6.1
Mason and Gunst Data:

Identifying collinearity variables
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

αk 1.583 1.382 0.872 0.659 0.603 0.164
ηk 1.000 1.146 1.817 2.403 2.625 9.651

INFD 0.154 0.159 0.047 0.600 0.040 0.000
[0.392] [0.398] [0.218] [0.775] [−0.200] [−0.003]

PHYS 0.250 0.056 0.029 0.049 0.616 0.000
[0.500] [0.237] [0.171] [−0.221] [0.785] [0.017]

DENS 0.108 0.370 0.000 0.023 0.000 0.499∗
[0.328] [−0.608] [−0.010] [0.153] [0.004] [0.706]

AGDS 0.107 0.371 0.001 0.020 0.001 0.500∗
[0.327] [−0.609] [0.031] [0.143] [0.024] [−0.707]

LIT 0.260 0.017 0.079 0.307 0.337 0.000
[−0.510] [−0.131] [−0.280] [0.554] [0.581] [−0.003]

HIED 0.122 0.027 0.844 0.001 0.006 0.001
[−0.349] [−0.165] [0.919] [0.023] [0.078] [0.028]

∗ Variables that are involved in the collinearity

Example 2: Longley Data

The second data set that we consider is the Longley data set, found in the appendix of

Longley (1967), Tables 1 and 2, p. 830-831. The data set is distributed with the R pro-

gramme (R Development Core Team, 2008), and has been reproduced in Appendix A (p.

A-8). The data set consists of six explanatory variables: Gross National Product Implicit

Price Deflator (GNP.deflator), Gross National Product (GNP), Unemployment (Unem-

ployed), Size of Armed Forces (Armed.Forces), Noninstitutional Population 14 Years of

Age and Over (Population), the Time variable (Year), and one response variable, which

was pieces of employment made additional to total employment (Employed).

The correlation matrix below (Table 6.2) shows that the response variable, Employed, is

strongly positively correlated with four of the explanatory variables: GNP.deflator, GNP,

Population and Year, and moderately correlated with Unemployed and Armed.Forces.

The four explanatory variables that are strongly correlated with the response variable are

also strongly correlated with each other.
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Table 6.2
Longley Data: Correlation matrix

Employed GNP. GNP Unem- Armed. Popula- Year
deflator ployed Forces tion

Employed 1.000
GNP.deflator 0.971 1.000

GNP 0.984 0.992 1.000
Unemployed 0.503 0.621 0.604 1.000

Armed.Forces 0.457 0.465 0.446 −0.177 1.000
Population 0.960 0.979 0.991 0.687 0.364 1.000

Year 0.971 0.991 0.995 0.668 0.417 0.994 1.000

When we analysed the data, the fourth, fifth and sixth condition indices indicated the

presence of weak to very strong collinearity in the data set (refer to Table 6.3, for the

singular values, condition indices, values of the squared right singular vectors for each

axis, and the values of the eigenvectors of XTX (in square brackets)).

From Table 6.3, we identify collinearity on the axes with large condition indices (fourth to

sixth axes), between GNP.deflator, GNP, Population and Year, as they have large values

of the squared right singular vectors. The values exceed 2/m = 0.333 or are slightly

below this cut-off since the explanatory variables are involved in multiple dependencies.

GNP.deflator and Population account for 97.64% of the variation in the fourth axis, whilst

Year and Population account for 86.27% of the variance in the fifth axis, and GNP and

Year account for 87.28% of the variation in the sixth axis. The eigenvectors of XTX also

identify collinearity between GNP.deflator, GNP, Population and Year, since the values

exceed |
√

2/m |= 0.577 or are slightly below this cut-off because the explanatory vari-

ables are involved in multiple dependencies.
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Table 6.3
Longley Data:

Identifying collinearity variables
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

αk 2.146 1.084 0.451 0.122 0.051 0.019
ηk 1.000 1.979 4.757 17.560 42.471 110.544

GNP.deflator 0.213 0.003 0.022 0.629∗ 0.114 0.018
[0.462] [−0.058] [0.149] [0.793] [−0.338] [0.135]

GNP 0.213 0.003 0.077 0.015 0.022 0.670∗
[0.462] [−0.053] [0.278] [−0.122] [0.150] [−0.819]

Unemployed 0.103 0.355 0.530 0.000 0.000 0.012
[0.321] [0.596] [−0.728] [0.008] [−0.009] [−0.108]

Armed.Forces 0.041 0.637 0.315 0.006 0.001 0.000
[0.202] [−0.798] [−0.562] [−0.077] [−0.024] [−0.018]

Population 0.214 0.002 0.038 0.348∗ 0.301∗ 0.097
[0.462] [0.046] [0.196] [−0.590] [−0.549] [0.315]

Year 0.216 0.000 0.016 0.003 0.562∗ 0.203∗
[0.465] [−0.001] [0.128] [−0.052] [0.750] [0.450]

∗ Variables that are involved in the collinearity

6.3 Decomposing the Regression Coefficients to Identify the

Variables that are Involved in the Collinearity

The explanatory variables that are involved in collinear relationships are known to have

large regression coefficients. In this section, we consider an alternative measure that

may be used to identify the explanatory variables that are involved in the collinearity.

The proposed measure highlights the explanatory variables that have large regression

coefficient values on an axis (or axes) with near-zero singular value(s).

In Chapter 5, section 5.2, we expressed the jth regression coefficient as

β̂j =
n∑
i=1

m∑
k=1

vjkuikyi
αk

=
n∑
i=1

yi

[
m∑
k=1

vjkuik
αk

]

=
m∑
k=1

vjk
αk

[
n∑
i=1

uikyi

]
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The quantity

vjk
αk

n∑
i=1

uikyi ≡ bjk

is the contribution of the kth principal axis to β̂j. Notice then that β̂j is simply the sum of

the contributions from each principal axis. For the axes that are associated with near-zero

singular values, unless
∑n

i=1 uikyi is small, bjk will be large. Clearly, a potential warning

that all is not well in regression analysis occurs when an axis with a small singular value

makes a large contribution to β̂j.

Gunst and Mason (1980) have proposed a similar measure (refer to Gunst and Mason

(1980, p. 300)), but the notation used by Gunst and Mason differs from ours in that

we have used values of the left singular vectors to express bjk. As we have seen with the

values of the eigenvectors of XTX, Gunst and Mason did not quantify what a ‘large’ value

of bjk should be. Below, we propose a threshold that may be used to classify bjk values

as large or otherwise.

Quantities helpful in this analysis are:

| bjk |
m∑
k=1

| bjk |
and Kj =

k× | bjk |
m∑
k=1

| bjk |

The former indicates the proportion of the absolute contributions of principal axis k to β̂j,

and the latter is an easy-to-interpret statistic - values of Kj greater than 1 indicate that

the axis makes a more-than-average contribution to the coefficient. As a crude cut-off

value, we will investigate all axes with small singular values (using condition indices as a

guideline), and with Kj values greater than 2 to identify the explanatory variables that

have large coefficient estimates. Thus, two or more explanatory variables with Kj values

greater than 2 on an axis (or axes) with a large condition index (or indices), are said to

be involved in a collinearity.

Note once again that the threshold of 2 should be applied when the explanatory variables

are involved in single dependencies. For explanatory variables involved in multiple depen-

dencies, the threshold should be lowered as β̂j will be contributing to multiple principal

axes.
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6.3.1 Illustrative Examples

Example 1: Mason and Gunst Data

Table 6.4 shows values of Kj. From Table 6.4, DENS and AGDS have large coefficient

values on the smallest singular value, since Kj > 2 on the smallest singular value.

Table 6.4
Mason and Gunst Data: Identifying collinear variables

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
αk 1.583 1.382 0.872 0.659 0.603 0.164
ηk 1.000 1.146 1.817 2.403 2.625 9.651

INFD 2.340 0.906 1.032 1.200 0.516 0.012
PHYS 2.640 0.480 0.714 0.306 1.794 0.066
DENS 1.764 1.248 0.042 0.216 0.012 2.718∗

AGDS 1.722 1.224 0.132 0.198 0.054 2.670∗

LIT 2.592 0.252 1.128 0.732 1.278 0.012
HIED 1.746 0.312 3.642 0.030 0.168 0.102

∗ Variables with large regression coefficient values.

Example 2: Longley Data

For the Longley data set (Table 6.5), we identify collinearity between GNP.deflator, GNP,

Population and Year as they have large values for Kj on the axes with relatively large

condition indices (the threshold has been lowered since some β̂j’s are contributing towards

multiple axes).

Table 6.5
Longley Data: Identifying collinear variables

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
αk 2.1455 1.0841 0.4510 0.1222 0.0505 0.0194
ηk 1.0000 1.9790 4.7570 17.5604 42.4710 110.5442

GNP.deflator 1.002 0.030 0.384 0.390 2.886∗ 1.302
GNP 0.546 0.018 0.390 0.030 0.696 4.314∗

Unemployed 1.038 0.480 2.802 0.006 0.120 1.548∗

Armed.Forces 0.960 0.948 3.174 0.084 0.456 0.378
Population 0.630 0.018 0.318 0.186 2.958∗ 1.896∗

Year 0.498 0.000 0.162 0.012 3.174∗ 2.154∗

∗ Variables with large regression coefficient values.
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6.4 A Note about Collinearity-Influential Observations

Outlying observations in the explanatory variables have been shown to alter the collinear-

ity structure of the X matrix (refer to Belsley et al. (1980), Mason and Gunst (1985a),

Hadi (1988), Walker (1989) and Sengupta and Bhimasankaram (1997)). Such observa-

tions are known as collinearity-influential observations. Detecting the presence of the

collinearity-influential observations is important for diagnostics of collinearity and for the

type of estimation technique that is chosen as an alternative to the least squares method,

since observations that mask the level of collinearity could adversely affect the results of

robust estimators; whilst observations that induce the level of collinearity could affect the

results of biased estimators.

Mason and Gunst (1985a) showed that collinearity can be increased without bounds when

the leverage of an observation is increased, therefore the measures for detecting variables

that are involved in the collinearity will be affected by outlying observations in the ex-

planatory variables. We therefore recommend that measures introduced in Chapter 3 for

detecting observations that are outlying in the explanatory variables be used to iden-

tify potential collinearity-influential observations. Diagnostics such as those proposed by

Walker (1989), Hadi and Nyquist (1993), Sengupta and Bhimasankar (1997), and the au-

thors cited therein, may be used to verify the nature and extent to which the observations

are affecting the collinearity structure of the X matrix.

6.5 Discussion

Collinearity is known to have an adverse effect on the regression coefficients, in particular,

the regression coefficients may be too large and have the wrong signs, and the variances of

the coefficients tend to be much larger for the explanatory variables involved in collinear

relationships than for uncorrelated explanatory variables.

In this chapter, we proposed an alternative measure for identifying variables that are

involved in the collinearity that is based on examining the magnitude of the squared

right singular vectors, which represent the proportion of variance due to an axis that is

explained by a particular variable. As a result of the proposed threshold for identifying

large values of the squared singular vectors for variables that are involved in the collinear-

ity, we are able to propose a threshold for labelling large values of the eigenvectors of

XTX.

Two real data sets were used to illustrate the proposed measure and thresholds of 2/m
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and |
√

2/m | for the squared singular vectors and the eigenvectors of XTX respectively,

for values that correspond to near-zero singular values, which highlight the explanatory

variables that are involved in collinear relationships.

We also proposed a threshold for an approach that is based on decomposing the regres-

sion coefficients into contributions from each axis to identify variables that are involved

in collinear relationships. The results obtained using this approach mirror those obtained

when observing ‘large’ values of the eigenvectors of XTX that correspond to near-zero

singular values.

There are numerous approaches that may be employed to deal with collinear data, and

these depend on the reason for the collinearity among the explanatory variables and the

purpose of study:

Redundant variables may be eliminated: Redundant variables are eliminated if the

collinearity is a function of the sample data and not a function of the population. Redun-

dant variables will have large values of the squared right singular vectors for near-zero

singular values. For a discussion on this topic, refer to Hocking (1983) and Hawkins and

Fatti (1984).

Collect additional observations: Collection of additional observations has been pro-

posed when the collinearity is a function of the sample data and the explanatory variables

do not represent the range over which inferences are to be made. For a discussion on this

topic, refer to Sengupta and Bhimasankaram (1997) and Hocking (2003).

Use biased estimators: Biased estimators such as principal components regression

(discussed in the next chapter) are employed when the collinearity is a function of the

population. Refer to Mason and Perreault Jr (1991) and the references cited therein, for

a discussion on this and other methods that can be used for dealing with collinearity.

In the next chapter, we illustrate the computational theory of principal components re-

gression, focusing particularly on expressing the principal components regression estimates

using the left singular vectors when the purpose of analysis is predicting the response vari-

able.
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Chapter 7

Principal Components Regression

Principal components regression is a form of biased estimator that is used when there is collinear-
ity among the explanatory variables, and often, only a subset of the principal axes are retained
in the estimation of regression quantities. In this chapter we illustrate an alternative compu-
tational approach to principal components regression that is based on the SVD. We focus our
attention particularly on employing values of the left singular vectors in expressing the principal
components regression estimates where it is appropriate. Examples are used to demonstrate the
usefulness of expressing and decomposing the multiple correlation coefficient, R2, to determine
the importance of the axes in explaining the amount of variation in y, using the notation that
has been introduced so far in the thesis. We also propose a measure to determine the range of
values in which prediction is reasonable when there is collinearity in the data.
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7.1 Introduction

In this chapter, we continue to consider the standard linear regression model:

y = Xβ + ε (7.1)

As already stated in Chapter 6, principal components regression is a form of biased esti-

mator that is used when the collinearity among the explanatory variables is a function of

the population. Principal components regression is often described using the transformed

version of (7.1). That is,

y = Zγ + ε

where Z = XV is a matrix of principal components (zk),

V is a matrix of right singular vectors (vk), and

γ = VTβ is a vector of coefficients in the transformed model.

Thus the original explanatory variables are replaced by the uncorrelated components/axes

(that is, the zk’s), which makes computations more stable (Jolliffe, 2002).

In principal components regression, often only a subset of the principal axes are retained

in the estimation of regression quantities, using one of two criteria which will be described

later in the chapter. Excluding a few axes does not result in the elimination of explana-

tory variables in the original model, but may result in a decrease of the model’s variance

and/or a decrease in the explanatory power of the model, and an increase in bias of the

regression estimates.

Mandel (1982) illustrated how to carry out principal components regression by replacing

the matrix X by its SVD (that is, X = UDαV
T), and in this chapter, we illustrate an

alternative computational approach to principal components regression that is based on

the SVD when the goal of analysis is to predict values of the response variable. The

computational approach illustrated in the chapter differs from Mandel’s in that we in-

clude values of the left singular vectors in expressing the principal components regression

estimates where it is appropriate.

This chapter is organised as follows. In the next section, we briefly review the computa-

tional theory of the bias introduced when selecting a subset of the axes in the estimation

of regression coefficients in principal components regression. We also consider two strate-

gies for selecting axes to retain in the estimation of regression estimates using principal

components regression. Examples are used to demonstrate the usefulness of expressing
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and decomposing the multiple correlation coefficient, R2, to determine the importance

of the axes in explaining the amount of variation in y, using the notation that has been

introduced so far in the thesis. In section 7.3, we consider extrapolation when collinearity

is present. Here, we propose a measure to determine the range of values in which predic-

tion is reasonable when there is collinearity in the data. We then end the chapter with a

discussion of the main findings of the results presented in the chapter.

7.2 The Bias in Principal Components Regression

Selecting a subset of π (where π = k1, k2, . . . , kp) consisting of p of the m principal axes

is equivalent to fitting the model:

y = Xπβπ + ε∗

where Xπ = UπDαπV
T
π is a rank p approximation to X, with

Uπ = (uk1 ; uk2 , · · · ; ukp)

Vπ = (vk1 ; vk2 , · · · ; vkp)

Dαπ = diag(αk1 ;αk2 , · · · ;αkp)

and ε∗ is the model’s error term.

The estimator of βπ is

β̂π = VπD
−1
απU

T
πy

and β̂πj , the jth regression coefficient is given by

β̂πj =
n∑
i=1

p∑
k=1

vjkuikyi
αk

Assuming the full model to be unbiased,

E[β̂π] = VπD
−1
απU

T
πUDαV

Tβ = VπV
T
πβ.
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Thus β̂π is a biased estimator of β. We examine the bias in more detail later.

The variance of β̂π is given by:

var(β̂π) = (XT
πXπ)−1σ2

=
(
VπD

−2
απV

T
π

)
σ2

So

var(β̂πj) =
(
VT
πj

D−2
απVπj

)
σ2

= σ2

p∑
k=1

v2
jk

α2
k

where VT
πj

is the jth row of Vπ.

Since var(β̂j) = σ2

m∑
k=1

v2
jk

α2
k

var(β̂πj) ≤ var(β̂j).

If at least one of the principal axes excluded from π has a small singular value, then

var(β̂πj) will in general be much smaller that var(β̂j). There is thus a trade-off between

the fact that β̂π is biased, and the fact that it has a smaller variance.

7.2.1 Strategies for Retaining Axes in Principal Components Regression

There are two possible reasons for omitting axes from π:

(a) The axis is associated with a collinearity in X.

(b) The axis is uncorrelated with y.

We discuss each situation in turn.

Deleting the Axes that are Associated with a Collinearity in X

We assume that all the omitted axes represent collinearities. If axis k is involved in a

collinearity, then
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Xvk ≈ 0.

The bias in prediction using β̂π and not β̂ is given by:

ŷ − ŷπ = Xβ̂ −Xβ̂π = XVπ̄D
−1
α UTy

where Vπ̄ consists of the right basic vectors omitted from π. But if k ∈ π̄, then Xvk ≈ 0,

and hence

Xvπ̄ ≈ 0,

implying that

ŷ − ŷπ ≈ 0

There is in fact a wide range of β̂ values that will give essentially the same predicted

values. Consider

β̂∗ = VπD
−1
απU

T
πy + Vπ̄D

∗D−1
απ̄U

T
π̄y

where D∗ = diag(d1, d2, · · · , dm−p) is an arbitrary diagonal matrix. Then

ŷ∗ = Xβ̂∗ = ŷπ + XVπ̄D
∗D−1

απ̄U
T
π̄y ≈ ŷπ

since XVπ̄ ≈ 0

Thus if collinearity is present, β̂ can be decomposed into two parts, the part that expresses

the real relationship, and the part that is near arbitrary, which simply expresses the

collinearities.

This criterion of deleting an axis (or axes) associated with a collinearity in X will result

in a model with little loss of the total variance in X and will help to control the inflation

of variance in the β̂π’s, which will also result in β̂πj ’s that are not inflated, resulting in

more stable estimates of β̂ (Jolliffe, 2002). The estimator bias introduced however can

be substantial if the deleted axes are closely correlated with the response variable, y (no

bias is introduced if the singular value associated with the deleted axis is zero). Massy

(1965) therefore recommended that this criterion be used only if the retained axes are

interpretable, regardless of how the axes correlate with y.
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Deleting the Axes that are Uncorrelated with y

When the purpose of analysis is to predict future values, deleting the axes that are not

important predictors of y is recommended (Massy, 1965). We illustrate below an approach

that is based on decomposing the multiple correlation coefficient, R2, that may be used

to determine the importance of the axes in explaining the amount of variation in y.

The transition formulae (Chapter 2, p. 2-2), enable us to add an extra row to the matrix

G for the response variable, y. Thus

gT
m+1 = yTFD−1

α

Note that the m columns, x1,x2, . . . ,xm, of X define an m dimensional subspace of n–

space. The points, g1,g2, . . . ,gm (the rows of G) are the same points referred to a new

set of m orthogonal axes, the principal axes, which form a basis for m–space.

The m + 1 columns x1,x2, . . . ,xm,y define an m + 1 dimensional subspace of n–space.

Thus the point gm+1, given by the transition formula is not the actual point y (in m+ 1

space), but its projection into the m–space defined by the principal axes. In fact gm+1 is

simply the point ŷ = Xβ̂ referred to the new coordinate system:

ŷ = Xβ̂ = X(XTX)−1XTy

= UUTy

= UD−1
α FTy

= Ugm+1

The proof that gm+1 is the projection of y into the m–subspace now follows easily:

ŷT(y − ŷ) = yTUUT(y −UUTy) = 0

so ŷ (and hence gm+1) is orthogonal to y − ŷ.

R2, the multiple correlation coefficient is given by

R2 =
‖ ŷ ‖2

‖ y ‖2
=
‖ gm+1 ‖2

‖ y ‖ 2
=

m∑
k=1

g2
m+1,k

n∑
i=1

y2
i

= (cosφ)2
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(Notice that the norm (length) of the vector is independent of the axis system)

where φ is the angle between y and the m–space defined by principal axes (that is, by

the columns of X).

Also

g2
m+1,k

‖ y ‖2
= (cosφk)

2

where φk is the angle between y and the kth principal axis. This quantity may be

interpreted as the contribution of the kth principal axis to R2, since

(cosφ)2 =
m∑
k=1

(cosφk)
2

The multiple correlation coefficient obtained by selecting a subset, π, of the principal axes

is given by

R2
π = R2

{k1,k2,...,kp} =

p∑
i=1

cosφki =

p∑
i=1

g2
m+1,ki

‖ y ‖2

Suppose an axis has been omitted from π because it is uncorrelated with y even though it

accounts for a substantial proportion of the variability in X. We recognise this situation

when the axis has a substantial singular value, but makes a very small contribution to

R2. If this situation arises there must be one or more columns (variables) of X which are

almost uncorrelated with y. These variables will have near-zero values for their regression

coefficients.

To illustrate, suppose variable j′ has βj′ close to zero. Then a substantial proportion of

the variance induced by variable j′ must be accounted for by one of the principal axes

(the kth axis, say) which makes a small contribution to R2 (that is, gm+1,k is small). This

means that vT
jk will be large, and since

∑m
j=1 v

2
jk = 1, vjk (or v2

jk) must be small for j 6= j′.

The bias in β̂πj induced by omitting axis k is given by
∑m

j=1 vkjvjkβj. This bias will be

small, since when j 6= j′, vjk is small or when j 6= j′, βj is small. Thus omission of the axes

which are nearly uncorrelated with y causes little bias in the regression coefficients, even

though these axes may have large singular values, and account for a large proportion of

the total variance in X.
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Appending a row of (cosφk)
2 values to the matrix of v2

jk, which indicates the proportion

of the variance due to the kth principal axis that is explained by variable j (refer to

Chapter 6), we are able to determine the order of importance of the axes in explaining

the variation in y and the variables that are almost uncorrelated with y, in addition to

identifying the variables that are involved in the collinearity as illustrated in Chapter 6.

Illustrative Examples

We revisit the examples used in Chapter 6 to demonstrate the use of appending a row of

(cosφk)
2 values to the matrix of v2

jk values.

Example 1: Mason and Gunst Data

Table 7.1 shows the v2
jk values, the proportion of explained variation by the axes

(Prop Explained), (cosφk)
2 values, and the proportion contributed to R2 by the axes

(Prop R2), for the Mason and Gunst data set.

In Chapter 6, we identified the existence of collinearity between DENS and AGDS on the

last axis. The order of importance of the axes in terms of the proportion contributed to

R2 by the axes is Axis 1, Axis 3, Axis 2, Axis 5, Axis 4 and Axis 6. The second axis

explains 31.8% of the variation in X, even though the axes makes a small contribution to

R2. The magnitude of the v2
jk values for DENS and AGDS on the second axis suggests

that the two collinear variables are possibly not correlated with the response variable.

Table 7.1
Mason and Gunst Data: Contribution of axes to R2 = 0.581

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
αk 1.583 1.382 0.872 0.659 0.603 0.164

Prop Explained 0.418 0.318 0.127 0.072 0.061 0.004
ηk 1.000 1.146 1.817 2.403 2.625 9.651

INFD 0.154 0.159 0.047 0.600 0.040 0.000
PHYS 0.250 0.056 0.029 0.049 0.616 0.000
DENS 0.108 0.370 0.000 0.023 0.000 0.499
AGDS 0.107 0.371 0.001 0.020 0.001 0.500

LIT 0.260 0.017 0.079 0.307 0.337 0.000
HIED 0.122 0.027 0.844 0.001 0.006 0.001

(cosφk)
2 0.431 0.048 0.082 0.005 0.012 0.002

Prop R2 0.743 0.083 0.141 0.009 0.021 0.003
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Example 2: Longley Data

Table 7.2 shows the v2
jk values, the proportion of explained variation by the axes

(Prop Explained), (cosφk)
2 values, and the proportion contributed to R2 by the axes

(Prop R2), for the Longley data set. The first axis accounts for most of the variability

in X (76.7%), and contributes the most to R2 (91.9%). The order of importance of the

axes in terms of the proportion contributed to R2 by the axes is Axis 1, Axis 3, Axis 2,

Axis 5, Axis 6 and Axis 4. Thus for this data set, the bias introduced by omitting the

axes that represent collinearities would be similar to the bias introduced when deleting

the axes that are not strongly correlated with the response variable.

Table 7.2
Longley Data: Contribution of axes to R2 = 0.996

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
αk 2.146 1.084 0.451 0.122 0.051 0.019

Prop Explained 0.767 0.196 0.034 0.002 0.000 0.000
ηk 1.000 1.979 4.757 17.560 42.471 110.544

GNP.deflator 0.213 0.003 0.022 0.629∗ 0.114 0.018
GNP 0.213 0.003 0.077 0.015 0.022 0.670∗

Unemployed 0.103 0.355 0.530 0.000 0.000 0.012
Armed.Forces 0.041 0.637 0.315 0.006 0.001 0.000

Population 0.214 0.002 0.038 0.348∗ 0.301∗ 0.097
Year 0.216 0.000 0.016 0.003 0.562∗ 0.203∗

(cosφk)
2 0.914 0.015 0.057 0.000 0.008 0.001

Prop R2 0.919 0.015 0.057 0.000 0.008 0.001

The problem of selecting axes based on the size of the singular value and not considering

how the axes correlate with the response variable if the purpose of analysis is prediction

has been illustrated by Jolliffe (1982) and Hadi and Ling (1998), since the two strategies

are not likely to produce the same results.

Sun (1995) proposed a similar approach for the second strategy that is based on looking at

the correlation of each axes with the response variable in principal components regression,

referred to as ‘Correlated Principal Components Regression’ (CPCR), and advocates the

use of root mean square error of prediction criterion (RMSEP) to select the number of

components to retain when prediction is the main purpose of analysis. There are various

methods that exist for selecting the number of axes to retain in principal components

regression depending of the strategy chosen, and the reader is referred to Jolliffe (2002).
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7.3 Prediction when Collinearity is Present

Extrapolation, the prediction of the response variable for values of x0 = (x01 ,x02 , . . . ,x0m)

outside the convex hull of the set of x values in the rows of X is dangerous, because the

variance of the predicted value increases when a given value of x0 lies further away from

the convex hull of the rows of X. In the presence of collinearity, it is not always obvious

whether a given value of x0 lies inside the convex hull of the rows of X. Numerous authors

(for example Hocking (2003), Mandel (1982)) have warned against this situation, since

the predictions obtained using the full model compared to the reduced model will differ

substantially.

The transition formulae, F = XGD−1
α , helps resolve this problem of describing the range

of values in which prediction is reasonable. Given a vector x0, we find its coordinates

with respect to the principal axes:

fT
0 = xT

0 GD−1
α

We now compute

f 2
0k

m∑
k=1

f 2
0k

for all k = 1, 2, . . . ,m

and interpret this as the squared cosine of the angle x0 makes with the kth principal axis.

Thus ∑
k∈π

f 2
0k

m∑
k=1

f 2
0k

is the squared cosine of the angle x0 makes with the p–subspace defined by π (refer to

Figure 2.1, p. 2-8). If this value is less than 0.5, then the angle is greater than 45 ◦, and

x0 lies more in the m− p subspace defined by π̄, and prediction is clearly unsatisfactory.

A more stringent cut-off value could be
√

3/2 = 0.866 corresponding to the angle of 30 ◦.

Another important extrapolation check is that f0k should follow the same pattern of

collinearity as the bulk of the data. This is easily done by checking that f0k lies within

the limits of coordinates for the kth axis, that is
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min
i=1...n

{fik} ≤ f0k ≤ max
i=1...n

{fik} for all k = 1, 2, . . . ,m

This can most easily be checked by computing

f 2
0k

n∑
i=1

f 2
ik

and observing whether this value is greater than the

f 2
ik

n∑
i=1

f 2
ik

for all i = 1, 2, . . . , n

values which have already been computed.

7.4 Discussion

Principal components regression is a form of biased estimator that is used when there

is collinearity among the explanatory variables, and in this chapter, we considered an

alternative computational approach to principal components regression using the singular

value decomposition.

We demonstrated the use of appending a row of (cosφk)
2 values (that is, the contribution

of each axis to R2) to the matrix of v2
jk, which enables us to simultaneously determine

the order of importance of the axes in explaining the variation in y and the variables that

are almost uncorrelated with y, in addition to identifying the variables that are involved

in the collinearity, as was illustrated in Chapter 6.

We also saw the effectiveness of one of the measures proposed in Chapter 3, that is, the

u2
ik values, to identify outlying observations in the explanatory variables, in determining

the range of values for which prediction is reasonable when there is collinearity in the

data.

In the next and final chapter of the thesis, we summarise the main findings of the thesis,

and highlight our contributions and areas for further research.
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Chapter 8

Concluding Remarks

Regression analysis using the least squares approach is a widely used technique, and

regression estimates are known to be easily affected by one or a few unusual observations,

and collinearity among the explanatory variables. In this thesis we used the singular

value decomposition (SVD) in multiple regression, with special reference to problems

of identifying unusual observations which may influence the regression coefficients and

identifying the explanatory variables that are involved in collinear relationships.

The singular value decomposition (SVD) has been used in least squares problems, however

most authors have concentrated on the matrix of right singular vectors (that is, the

eigenvectors of XTX). In this thesis, we considered also the matrix of left singular vectors

(that is, the eigenvectors of XXT).

8.1 Contributions to Research

A procedure to identify outliers which highlights observations that are masked

or swamped

The diagonal values of the hat matrix (that is, the hi values) are used in regression analysis

to identify outlying observations in the explanatory variables that may alter the fit of the

least squares line. The hi values however, are known to suffer from the effects of masking

and swamping, and in this thesis we proposed a procedure which is adapted in part from

correspondence analysis, to identify the leverage points.

The procedure entails expressing the hi values as sums of contributions of variance of each

axis that is explained by each observation (rl), and using these contributions, together

with the contributions of variance of each observation that is explained by each axis (cl),

to identify the axis that observations are outlying on. We then produce a leverage-distance

(L-D) plot which highlights any observations which may be masked or swamped.
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The procedure for the hi values was extended to the values of hz, where the response

variable is appended to the matrix of explanatory variables. Once again, the procedure

was successful in identifying outlying observations that were masked or swamped.

Thus our contribution to research is a procedure which identifies outlying points and will

suffer from very little (if any) effects of masking and swamping.

A drawback with using the procedure is that too many observations may be declared

as leverage points, since observations with large hi (or hz) values that are not explained

well by any axis are automatically treated as leverage points if they contribute highly to

the determination of the direction of at least one of the axis. Another drawback that

is associated with using the hz values is that we are not able to differentiate between

leverage points and regression outliers, since hz may be large because of a large hi value

and/or a large residual value.

A measure to aid with the identification of observations that are being accom-

modated by the least squares fit

The residuals are also often examined to determine the observations that may have influ-

enced the fit of the least squares regression line, because they take the response variable,

y, into account. The residuals, either in their raw or transformed form, are known to be

a poor measure of fit since they may fail to identify the outlying observations when these

observations are being accommodated by the least squares fit.

We proposed a measure, Rj, that can be used in conjunction with the transformed resid-

uals. The measure, which is based on the off-diagonal values of the hat (Hx) matrix,

provides insight into the role that each observation plays in determining the displacement

of other observations from the least squares fit. A drawback of using Rj however, is that

since a large hij value also indicates that observation i and observation j are situated far

from the bulk of the data, we may not be able to differentiate between observations with

large Rj values because they are good leverage points or regression outliers.

A measure to identify the outlying observations that influence the regression

coefficients

The regression estimates such as the coefficients, are known to be easily affected by out-

lying observations, and measures such as DFBETAS, which are intended to measure the

impact of an observation on the individual regression coefficients, are prone to the same
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problems as the residuals and the diagonal values of the hat matrix since they are a func-

tion of the residuals, which are a poor measure of fit, and the diagonal values of the hat

matrix, which may suffer from the masking and swamping effects.

By decomposing the regression coefficients, we have proposed a measure, Bij, which en-

ables us to determine the outlying observations that may have a disproportionate effect

in the determination of the individual regression coefficients, and do not suffer from the

same problems as DFBETAS. A limitation with using the Bij values is that although they

highlight the regression coefficients affected by the outlying observations, they do not tell

us the actual impact the observation has on the estimation of the coefficient(s).

Thus the proposed measures, even though they are exploratory, have value in revealing

outlying and influential data. Another advantage of the proposed measures for identifying

outlying and influential observations is that they do not entail deleting any observations

from the analysis.

Thresholds for variables that are involved in collinear relationships

A number of approaches have been proposed to identify the explanatory variables that are

involved in collinear relationships, and to detect the coefficients that are most adversely

affected. We proposed an alternative measure for identifying variables that are involved

in the collinearity that is based on examining the magnitude of the squared right singular

vectors, which represent the proportion of variance due to an axis that is explained by a

particular variable.

As a result of the threshold proposed for the squared right singular vectors (that is,

v2
jk > 2/m ), we were able to recommend a threshold for a measure that is based on

examining the magnitude of the eigenvectors of XTX (vjk >|
√

2/m |) that correspond

to small singular values to determine the explanatory variables that are involved in the

collinearity. We also motivated for a threshold to use for the decomposed regression

coefficients that correspond to small singular values to determine the coefficients that are

affected by the collinearity.

Decomposing R2 to determine the importance of the axes in explaining the

variation in y

Principal components regression is a form of biased estimator that is used when there is

collinearity among the explanatory variables, and often only a subset of the principal axes
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are retained in the estimation of regression quantities.

In this thesis, we focused particularly on employing values of the left singular vectors

in expressing the principal components regression estimates where it is appropriate, and

demonstrated the usefulness of decomposing the multiple correlation coefficient, R2, to

determine the importance of the axes in explaining the amount of variation in y. We

also illustrated the use of appending a row of (cosφk)
2 values (that is, the contribution of

each axis to R2) to the matrix of v2
jk, which enables use to simultaneously determine the

order of importance of the axes in explaining the variation in y and the variables that are

almost uncorrelated with y, in addition to identifying the variables that are involved in

the collinearity.

We also saw the effectiveness of one using the u2
ik values in determining the range of values

for which prediction is reasonable when there is collinearity in the data.

8.2 Further Research Directions

Throughout the thesis, we have assumed that the X matrix is standardised to have zero

mean and unit variance. As already mentioned in Chapter 3, depending on the extent of

deviation of the outlying observations from the bulk of the data, the L-D plot may fail

to reveal any observations that are being masked or swamped, thus there is a need to

consider robust estimates of the mean and variance.

When examining the distance of the observations from the origin using the L-D plot, there

is no guideline that may be used in order to determine what should constitute a ‘large’

distance from the origin for the observations that are located on the various axes. Thus,

research to establish thresholds to use for the observations that are located on the various

axes is worth pursuing.

In Chapter 4, the Hawkins, Bradu and Kass data set presented a challenge in that the

three good leverage points (observations 11 to 13) also had large Rj values, simply be-

cause they cluster together far away from the bulk of the other observations. The L-D

plot may be used to get a sense of the proximity of the observations relative to each other

by looking at the distance of the observations from the origin, however, there is a need

for an approach that will enable us to differentiate between observations that have large

Rj values because they are regression outliers that may be responsible for inducing large

residuals for other observations, and those observations that are located far from the bulk

of the data but in the general direction of the least squares fitted line.
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Throughout the thesis, we have also recommended thresholds to use for the measures

proposed which are only intended to provide a rough approximation. Since the measures

introduced are exploratory, it may be worthwhile considering their statistical properties.

We have also not attempted to make suggestions about what to do with observations that

are influential, thus this would be something to consider next.
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Appendix A

Data Sets

A.1 Data Used in Chapter 3

A.1.1 Data for Example 1: Hawkins, Bradu and Kass data (Hawkins et al.,

1984)

Table A.1
Hawkins, Bradu and Kass data

X1 X2 X3 Y

1 10.1 19.6 28.3 9.7

2 9.5 20.5 28.9 10.1

3 10.7 20.2 31 10.3

4 9.9 21.5 31.7 9.5

5 10.3 21.1 31.1 10

6 10.8 20.4 29.2 10

7 10.5 20.9 29.1 10.8

8 9.9 19.6 28.8 10.3

9 9.7 20.7 31 9.6

10 9.3 19.7 30.3 9.9

11 11 24 35 -0.2

12 12 23 37 -0.4

13 12 26 34 0.7

14 11 34 34 0.1

15 3.4 2.9 2.1 -0.4

16 3.1 2.2 0.3 0.6

17 0 1.6 0.2 -0.2

18 2.3 1.6 2 0

19 0.8 2.9 1.6 0.1
...

...
...

...
...
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Data Sets

Table A.1
continued

X1 X2 X3 Y
...

...
...

...
...

20 3.1 3.4 2.2 0.4

21 2.6 2.2 1.9 0.9

22 0.4 3.2 1.9 0.3

23 2 2.3 0.8 -0.8

24 1.3 2.3 0.5 0.7

25 1 0 0.4 -0.3

26 0.9 3.3 2.5 -0.8

27 3.3 2.5 2.9 -0.7

28 1.8 0.8 2 0.3

29 1.2 0.9 0.8 0.3

30 1.2 0.7 3.4 -0.3

31 3.1 1.4 1 0

32 0.5 2.4 0.3 -0.4

33 1.5 3.1 1.5 -0.6

34 0.4 0 0.7 -0.7

35 3.1 2.4 3 0.3

36 1.1 2.2 2.7 -1

37 0.1 3 2.6 -0.6

38 1.5 1.2 0.2 0.9

39 2.1 0 1.2 -0.7

40 0.5 2 1.2 -0.5

41 3.4 1.6 2.9 -0.1

42 0.3 1 2.7 -0.7

43 0.1 3.3 0.9 0.6

44 1.8 0.5 3.2 -0.7

45 1.9 0.1 0.6 -0.5

46 1.8 0.5 3 -0.4

47 3 0.1 0.8 -0.9

48 3.1 1.6 3 0.1

49 3.1 2.5 1.9 0.9

50 2.1 2.8 2.9 -0.4

51 2.3 1.5 0.4 0.7

52 3.3 0.6 1.2 -0.5

53 0.3 0.4 3.3 0.7
...

...
...

...
...
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Data Sets

Table A.1
continued

X1 X2 X3 Y
...

...
...

...
...

54 1.1 3 0.3 0.7

55 0.5 2.4 0.9 0

56 1.8 3.2 0.9 0.1

57 1.8 0.7 0.7 0.7

58 2.4 3.4 1.5 -0.1

59 1.6 2.1 3 -0.3

60 0.3 1.5 3.3 -0.9

61 0.4 3.4 3 -0.3

62 0.9 0.1 0.3 0.6

63 1.1 2.7 0.2 -0.3

64 2.8 3 2.9 -0.5

65 2 0.7 2.7 0.6

66 0.2 1.8 0.8 -0.9

67 1.6 2 1.2 -0.7

68 0.1 0 1.1 0.6

69 2 0.6 0.3 0.2

70 1 2.2 2.9 0.7

71 2.2 2.5 2.3 0.2

72 0.6 2 1.5 -0.2

73 0.3 1.7 2.2 0.4

74 0 2.2 1.6 -0.9

75 0.3 0.4 2.6 0.2
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Data Sets

A.1.2 Data for Example 2: Stack Loss data (Brownlee, 1965)

Table A.2
Stack Loss data

Air.Flow Water.Temp Acid.Conc. stack.loss

1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15
10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15
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Data Sets

A.1.3 Example 3: Health Club data

Table A.3
Health Club data (Chatterjee and Hadi, 1988)

weight pulse arm.leg time(0.25) time(1)

1 217 67 260 91 481
2 141 52 190 66 292
3 152 58 203 68 338
4 153 56 183 70 357
5 180 66 170 77 396
6 193 71 178 82 429
7 162 65 160 74 345
8 180 80 170 84 469
9 205 77 188 83 425
10 168 74 170 79 358
11 232 65 220 72 393
12 146 68 158 68 346
13 173 51 243 56 279
14 155 64 198 59 311
15 212 66 220 77 401
16 138 70 180 62 267
17 147 54 150 75 404
18 197 76 228 88 442
19 165 59 188 70 368
20 125 58 160 66 295
21 161 52 190 69 391
22 132 62 163 59 264
23 257 64 313 96 487
24 236 72 225 84 481
25 149 57 173 68 374
26 161 57 173 65 309
27 198 59 220 62 367
28 245 70 218 69 469
29 141 63 193 60 252
30 177 53 183 75 338
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Data Sets

A.2 Data Used in Chapter 6

A.2.1 Example 1: Mason and Gunst’s data (Gunst and Mason, 1980)

Table A.4
Mason and Gunst’s data

INFD PHYS DENS AGDS LIT HIED GNP

Australia 19.5 806 1 21 98.5 856 1316
Austria 37.5 695 84 1720 98.5 546 670

Barbados 60.4 3000 548 7121 91.1 24 200
Belgium 35.4 819 301 5257 96.7 536 1196

Brit. Guiana 67.1 3900 3 192 74.0 27 235
Bulgaria 45.1 740 72 1380 85.0 456 365
Canada 27.3 900 2 257 97.5 645 1947

Chile 127.9 1700 11 1164 80.1 257 379
Costa Rica 78.9 2600 24 948 79.4 326 357

Cyprus 29.9 1400 62 1042 60.5 78 467
Czechoslovakia 31.0 620 108 1821 97.5 398 680

Denmark 23.7 830 107 1434 98.5 570 1057
El Salvador 76.3 5400 127 1497 96.4 89 219

Finland 21.0 1600 13 1512 29.4 529 794
France 27.4 1014 83 1288 57.5 667 943

Guatemala 91.9 6400 36 1365 29.4 135 189
Hong Kong 41.5 3300 3082 98143 57.5 176 272

Hungary 47.6 650 108 1370 97.5 258 490
Iceland 22.4 840 2 79 98.5 445 572

India 225.0 5200 138 2279 19.3 220 73
Ireland 30.5 1000 40 598 98.5 362 550

Itay 48.7 746 164 2323 87.5 362 516
Jamaica 58.7 4300 143 3410 77.0 42 316

Japan 37.7 930 254 7563 98.0 750 306
...

...
...

...
...

...
...

...
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Data Sets

Table A.4
continued

...
...

...
...

...
...

...
...

Luxemborg 31.5 910 123 2286 96.5 36 1388
Malaya 68.9 6400 54 2980 38.4 475 356

Malta 38.3 980 1041 8050 57.6 142 377
Mauritius 69.5 4500 352 4711 51.8 14 225

Mexico 77.7 1700 18 296 50.0 258 262
Netherlands 16.5 900 346 4855 98.5 923 836

New Zealand 22.8 700 9 170 98.5 839 1310
Nicaragua 71.7 2800 10 824 38.4 110 160

Norway 20.2 946 11 3420 98.5 258 1130
Panama 54.8 3200 15 838 65.7 371 329
Poland 74.7 1100 96 1411 95.0 351 475

Portugal 77.5 1394 100 1087 55.9 272 224
Puerto Rico 52.4 2200 271 4030 81.0 1192 563

Romania 75.7 788 78 1248 89.0 226 360
Singapore 32.3 2400 2904 108214 50.0 437 400

Spain 43.5 1000 61 1347 87.0 258 293
Sweden 16.6 1089 17 1705 98.5 401 1380

Switzerland 21.1 765 133 2320 98.5 398 1428
Taiwan 30.5 1500 305 10446 54.0 329 161

Trinidad 45.4 2300 168 4383 73.8 61 423
United Kingdom 24.1 935 217 2677 98.5 460 1189

United States 26.4 780 20 399 98.0 1983 2577
USSR 35.0 578 10 339 95.0 539 600

West Germany 33.8 798 217 3631 98.5 528 927
Yugoslavia 100.0 1637 73 1215 77.0 524 265
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Data Sets

A.2.2 Example 2: Longley data

Table A.5
Longley data (Longley, 1967)

GNP.deflator GNP Unemployed Armed.Forces Population Year Employed

1947 83.0 234289 2356 1590 107608 1947 60323
1948 88.5 259426 2325 1456 108632 1948 61122
1949 88.2 258054 3682 1616 109773 1949 60171
1950 89.5 284599 3351 1650 110929 1950 61187
1951 96.2 328975 2099 3099 112075 1951 63221
1952 98.1 346999 1932 3594 113270 1952 63639
1953 99.0 365385 1870 3547 115094 1953 64989
1954 100.0 363112 3578 3350 116219 1954 63761
1955 101.2 397469 2904 3048 117388 1955 66019
1956 104.6 419180 2822 2857 118734 1956 67857
1957 108.4 442769 2936 2798 120445 1957 68169
1958 110.8 444546 4681 2637 121950 1958 66513
1959 112.6 482704 3813 2552 123366 1959 68655
1960 114.2 502601 3931 2514 125368 1960 69564
1961 115.7 518173 4806 2572 127852 1961 69331
1962 116.9 554894 4007 2827 130081 1962 70551
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Appendix B

Complete Tables for Examples

B.1 Example 1: Hawkins, Bradu and Kass data (1984) — Chap-

ter 3

Table B.1
Hawkins, Bradu and Kass data: rl, cl, hi and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3
(97.48%) (1.89%) (0.63%) hi (97.48%) (1.89%) (0.63%) DIST

1 0.045 0.005 0.001 0.051 0.998 0.002 0.000 0.131
2 0.045 0.001 0.001 0.047 0.999 0.000 0.000 0.130
3 0.053 0.007 0.012 0.072 0.996 0.003 0.001 0.155
4 0.053 0.002 0.012 0.067 0.998 0.001 0.001 0.154
5 0.053 0.000 0.007 0.060 0.999 0.000 0.001 0.155
6 0.051 0.011 0.000 0.062 0.996 0.004 0.000 0.149
7 0.050 0.003 0.001 0.054 0.999 0.001 0.000 0.147
8 0.044 0.002 0.004 0.050 0.999 0.001 0.001 0.130
9 0.049 0.001 0.016 0.066 0.997 0.001 0.002 0.144
10 0.044 0.001 0.028 0.073 0.995 0.001 0.004 0.129
11 0.070 0.002 0.009 0.081 0.999 0.001 0.001 0.205
12 0.077 0.006 0.048 0.131 0.995 0.001 0.004 0.225
13 0.079 0.000 0.017 0.096 0.999 0.000 0.001 0.231
14 0.095 0.141 0.314 0.550 0.952 0.027 0.020 0.292
15 0.001 0.025 0.019 0.045 0.565 0.347 0.088 0.004
16 0.002 0.028 0.033 0.063 0.688 0.222 0.090 0.007
17 0.006 0.020 0.000 0.026 0.939 0.061 0.000 0.018
18 0.002 0.007 0.000 0.009 0.937 0.063 0.000 0.007
19 0.003 0.013 0.002 0.018 0.927 0.070 0.003 0.010
20 0.001 0.012 0.022 0.035 0.689 0.192 0.119 0.003
21 0.002 0.010 0.005 0.017 0.883 0.101 0.016 0.005
22 0.004 0.028 0.001 0.033 0.864 0.135 0.001 0.012
23 0.003 0.002 0.012 0.017 0.959 0.013 0.029 0.008
24 0.003 0.001 0.008 0.012 0.980 0.005 0.015 0.010
...

...
...

...
...

...
...

...
...
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Complete Tables for Examples

Table B.1
continued

rl cl

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3
(97.48%) (1.89%) (0.63%) hi (97.48%) (1.89%) (0.63%) DIST

...
...

...
...

...
...

...
...

...
25 0.005 0.000 0.003 0.008 0.995 0.001 0.004 0.016
26 0.003 0.015 0.000 0.018 0.898 0.101 0.001 0.009
27 0.001 0.024 0.004 0.029 0.624 0.356 0.020 0.004
28 0.003 0.004 0.003 0.010 0.971 0.022 0.007 0.009
29 0.004 0.000 0.000 0.004 1.000 0.000 0.000 0.013
30 0.003 0.000 0.030 0.033 0.944 0.001 0.055 0.010
31 0.002 0.035 0.009 0.046 0.707 0.269 0.024 0.007
32 0.005 0.014 0.005 0.024 0.939 0.054 0.007 0.014
33 0.002 0.002 0.009 0.013 0.963 0.015 0.022 0.007
34 0.006 0.002 0.010 0.018 0.982 0.008 0.010 0.018
35 0.001 0.018 0.002 0.021 0.720 0.271 0.009 0.004
36 0.003 0.005 0.002 0.010 0.966 0.029 0.005 0.009
37 0.004 0.040 0.002 0.046 0.827 0.171 0.003 0.013
38 0.004 0.001 0.003 0.008 0.991 0.005 0.004 0.012
39 0.003 0.016 0.002 0.021 0.914 0.082 0.004 0.011
40 0.004 0.012 0.000 0.016 0.949 0.051 0.000 0.014
41 0.001 0.038 0.000 0.039 0.575 0.424 0.001 0.005
42 0.005 0.012 0.025 0.042 0.920 0.048 0.032 0.015
43 0.004 0.038 0.005 0.047 0.848 0.145 0.007 0.015
44 0.003 0.004 0.021 0.028 0.932 0.023 0.045 0.009
45 0.004 0.011 0.000 0.015 0.946 0.054 0.000 0.012
46 0.003 0.004 0.018 0.025 0.938 0.024 0.038 0.009
47 0.003 0.049 0.001 0.053 0.723 0.276 0.001 0.010
48 0.001 0.026 0.000 0.027 0.700 0.300 0.000 0.005
49 0.001 0.020 0.012 0.033 0.710 0.241 0.049 0.005
50 0.002 0.000 0.001 0.003 0.994 0.003 0.002 0.005
51 0.003 0.011 0.009 0.023 0.910 0.070 0.020 0.009
52 0.002 0.054 0.002 0.058 0.635 0.360 0.005 0.009
53 0.005 0.009 0.052 0.066 0.902 0.034 0.064 0.015
54 0.003 0.005 0.018 0.026 0.938 0.029 0.033 0.011
55 0.004 0.015 0.001 0.020 0.935 0.063 0.002 0.013
56 0.002 0.000 0.022 0.024 0.941 0.001 0.058 0.007
57 0.004 0.006 0.000 0.010 0.971 0.029 0.000 0.011
58 0.001 0.002 0.024 0.027 0.889 0.019 0.092 0.005
59 0.002 0.000 0.002 0.004 0.992 0.002 0.006 0.007
60 0.004 0.018 0.026 0.048 0.887 0.076 0.037 0.013
61 0.003 0.034 0.001 0.038 0.817 0.181 0.001 0.011
...

...
...

...
...

...
...

...
...
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Complete Tables for Examples

Table B.1
continued

rl cl

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3
(97.48%) (1.89%) (0.63%) hi (97.48%) (1.89%) (0.63%) DIST

...
...

...
...

...
...

...
...

...
62 0.005 0.000 0.002 0.007 0.997 0.000 0.003 0.016
63 0.004 0.004 0.015 0.023 0.954 0.020 0.026 0.011
64 0.001 0.007 0.005 0.013 0.854 0.118 0.027 0.003
65 0.003 0.006 0.009 0.018 0.937 0.042 0.021 0.008
66 0.005 0.018 0.000 0.023 0.938 0.062 0.000 0.016
67 0.003 0.000 0.002 0.005 0.995 0.000 0.005 0.009
68 0.006 0.007 0.019 0.032 0.961 0.021 0.018 0.020
69 0.004 0.011 0.001 0.016 0.944 0.054 0.002 0.011
70 0.003 0.006 0.004 0.013 0.951 0.040 0.009 0.009
71 0.002 0.002 0.002 0.006 0.974 0.019 0.007 0.005
72 0.004 0.011 0.000 0.015 0.952 0.047 0.000 0.013
73 0.004 0.017 0.008 0.029 0.920 0.069 0.010 0.014
74 0.005 0.030 0.001 0.036 0.889 0.109 0.002 0.016
75 0.005 0.008 0.035 0.048 0.929 0.029 0.042 0.016
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Complete Tables for Examples

B.2 Example 1: Hawkins, Bradu and Kass data (1984) — Chap-

ter 4

Table B.2
Hawkins, Bradu and Kass data: rl, cl, hz and DIST values

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(88.99%) (9.19%) (1.39%) (0.43%) hz (88.99%) (9.19%) (1.39%) (0.43%) DIST

1 0.056 0.022 0.002 0.001 0.081 0.960 0.039 0.000 0.000 0.209
2 0.058 0.028 0.004 0.001 0.091 0.952 0.047 0.001 0.000 0.217
3 0.066 0.025 0.003 0.003 0.097 0.962 0.037 0.001 0.000 0.245
4 0.063 0.013 0.005 0.004 0.085 0.977 0.021 0.001 0.000 0.229
5 0.065 0.020 0.000 0.001 0.086 0.970 0.030 0.000 0.000 0.239
6 0.063 0.021 0.007 0.004 0.095 0.964 0.034 0.002 0.000 0.234
7 0.066 0.034 0.001 0.010 0.111 0.948 0.051 0.000 0.001 0.248
8 0.059 0.032 0.000 0.000 0.091 0.946 0.054 0.000 0.000 0.220
9 0.060 0.017 0.004 0.006 0.087 0.970 0.029 0.001 0.000 0.220
10 0.057 0.026 0.005 0.012 0.100 0.953 0.045 0.001 0.001 0.212
11 0.041 0.162 0.000 0.048 0.251 0.707 0.289 0.000 0.004 0.207
12 0.045 0.180 0.017 0.133 0.375 0.697 0.289 0.004 0.010 0.229
13 0.050 0.146 0.003 0.000 0.199 0.767 0.232 0.001 0.000 0.232
14 0.058 0.213 0.093 0.227 0.591 0.702 0.267 0.018 0.013 0.294
15 0.001 0.002 0.029 0.014 0.046 0.639 0.105 0.223 0.032 0.007
16 0.001 0.000 0.029 0.034 0.064 0.693 0.017 0.212 0.078 0.008
17 0.005 0.000 0.021 0.000 0.026 0.937 0.008 0.056 0.000 0.021
18 0.002 0.000 0.008 0.000 0.010 0.948 0.000 0.051 0.000 0.009
19 0.003 0.000 0.013 0.003 0.019 0.932 0.004 0.060 0.004 0.012
20 0.001 0.000 0.013 0.021 0.035 0.746 0.004 0.168 0.082 0.004
21 0.001 0.001 0.009 0.006 0.017 0.817 0.074 0.093 0.017 0.006
22 0.003 0.000 0.030 0.002 0.035 0.857 0.014 0.127 0.002 0.013
23 0.003 0.002 0.003 0.009 0.017 0.930 0.046 0.012 0.012 0.012
24 0.003 0.002 0.001 0.012 0.018 0.910 0.064 0.006 0.020 0.011
25 0.005 0.000 0.000 0.003 0.008 0.991 0.005 0.001 0.003 0.019
26 0.003 0.002 0.014 0.000 0.019 0.898 0.045 0.058 0.000 0.013
...

...
...

...
...

...
...

...
...
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Complete Tables for Examples

Table B.2
continued

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(88.99%) (9.19%) (1.39%) (0.43%) hz (88.99%) (9.19%) (1.39%) (0.43%) DIST

...
...

...
...

...
...

...
...

...
27 0.001 0.003 0.028 0.001 0.033 0.652 0.156 0.189 0.003 0.008
28 0.003 0.001 0.003 0.004 0.011 0.956 0.020 0.018 0.006 0.010
29 0.004 0.001 0.000 0.000 0.005 0.968 0.032 0.000 0.000 0.014
30 0.003 0.000 0.000 0.034 0.037 0.954 0.000 0.001 0.045 0.013
31 0.002 0.000 0.037 0.007 0.046 0.760 0.002 0.225 0.013 0.009
32 0.005 0.000 0.013 0.006 0.024 0.952 0.000 0.042 0.006 0.017
33 0.003 0.001 0.001 0.008 0.013 0.947 0.034 0.007 0.012 0.011
34 0.006 0.000 0.003 0.011 0.020 0.985 0.000 0.006 0.008 0.023
35 0.001 0.000 0.019 0.001 0.021 0.772 0.004 0.220 0.003 0.005
36 0.004 0.002 0.004 0.004 0.014 0.930 0.051 0.014 0.005 0.015
37 0.004 0.000 0.039 0.002 0.045 0.863 0.008 0.128 0.002 0.017
38 0.003 0.004 0.001 0.005 0.013 0.877 0.113 0.003 0.007 0.012
39 0.004 0.000 0.017 0.005 0.026 0.924 0.009 0.062 0.005 0.015
40 0.005 0.000 0.012 0.000 0.017 0.960 0.001 0.039 0.000 0.017
41 0.001 0.001 0.040 0.000 0.042 0.657 0.028 0.314 0.000 0.007
42 0.005 0.000 0.013 0.027 0.045 0.936 0.003 0.037 0.025 0.019
43 0.003 0.002 0.040 0.010 0.055 0.798 0.045 0.146 0.011 0.015
44 0.003 0.001 0.004 0.028 0.036 0.926 0.020 0.017 0.037 0.013
45 0.004 0.000 0.012 0.001 0.017 0.955 0.001 0.043 0.001 0.016
46 0.003 0.000 0.004 0.023 0.030 0.946 0.004 0.018 0.033 0.012
47 0.003 0.002 0.054 0.000 0.059 0.770 0.036 0.194 0.000 0.015
48 0.001 0.000 0.028 0.001 0.030 0.757 0.006 0.236 0.001 0.006
49 0.001 0.001 0.020 0.013 0.035 0.676 0.049 0.230 0.045 0.005
50 0.002 0.001 0.001 0.000 0.004 0.946 0.050 0.004 0.000 0.008
51 0.002 0.001 0.010 0.011 0.024 0.857 0.058 0.064 0.021 0.009
52 0.002 0.001 0.058 0.000 0.061 0.706 0.024 0.269 0.001 0.012
53 0.004 0.004 0.012 0.047 0.067 0.824 0.082 0.043 0.051 0.016
54 0.003 0.002 0.006 0.025 0.036 0.875 0.056 0.029 0.039 0.011
55 0.004 0.000 0.015 0.002 0.021 0.935 0.006 0.056 0.003 0.015
56 0.002 0.000 0.000 0.023 0.025 0.953 0.000 0.000 0.046 0.009
57 0.003 0.002 0.005 0.000 0.010 0.898 0.078 0.024 0.000 0.011
58 0.002 0.000 0.002 0.022 0.026 0.903 0.023 0.018 0.055 0.007
59 0.003 0.000 0.000 0.003 0.006 0.983 0.011 0.001 0.006 0.010
60 0.005 0.001 0.018 0.030 0.054 0.905 0.015 0.053 0.028 0.019
61 0.003 0.000 0.034 0.000 0.037 0.854 0.004 0.141 0.001 0.013
62 0.004 0.004 0.000 0.001 0.009 0.918 0.081 0.000 0.001 0.017
63 0.004 0.000 0.003 0.017 0.024 0.965 0.001 0.014 0.021 0.014
64 0.002 0.002 0.009 0.002 0.015 0.804 0.118 0.071 0.006 0.007
65 0.002 0.001 0.005 0.009 0.017 0.898 0.050 0.034 0.018 0.009
66 0.006 0.000 0.017 0.000 0.023 0.950 0.007 0.044 0.000 0.021
...

...
...

...
...

...
...

...
...
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Complete Tables for Examples

Table B.2
continued

rl cl

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
(88.99%) (9.19%) (1.39%) (0.43%) hz (88.99%) (9.19%) (1.39%) (0.43%) DIST

...
...

...
...

...
...

...
...

...
67 0.004 0.001 0.000 0.001 0.006 0.974 0.024 0.001 0.002 0.013
68 0.005 0.005 0.009 0.014 0.033 0.878 0.084 0.026 0.012 0.020
69 0.003 0.001 0.011 0.001 0.016 0.934 0.017 0.047 0.002 0.012
70 0.002 0.002 0.008 0.003 0.015 0.892 0.059 0.044 0.005 0.009
71 0.002 0.000 0.002 0.002 0.006 0.979 0.000 0.017 0.005 0.007
72 0.004 0.000 0.011 0.000 0.015 0.959 0.001 0.040 0.000 0.015
73 0.004 0.001 0.019 0.005 0.029 0.885 0.037 0.072 0.006 0.015
74 0.005 0.001 0.030 0.002 0.038 0.911 0.009 0.078 0.001 0.021
75 0.004 0.001 0.010 0.033 0.048 0.905 0.030 0.032 0.033 0.017

B.3 Example 1: Hawkins, Bradu and Kass data (1984) — Chap-

ter 5

Table B.3
Hawkins, Bradu and Kass data – Influ-

ential Observations (Bj)

X1 X2 X3

1 3.134∗ 1.987 1.025
2 1.028 0.178 2.151∗

3 2.559∗ 6.852∗ 4.977∗

4 2.917∗ 2.859∗ 5.412∗

5 0.025 3.296∗ 4.052∗

6 5.481∗ 1.608 0.501
7 4.257∗ 0.716 1.201
8 1.533 3.260∗ 2.985∗

9 2.82∗5 4.034∗ 6.122∗

10 3.790∗ 5.993∗ 8.029∗

11 0.434 0.377 0.869
12 0.038 2.172∗ 1.880
13 0.240 0.471 0.327
14 0.513 5.063 2.845
15 1.722 0.416 1.378
16 0.784 0.314 0.718
...

...
...

...

Table B.4
Hawkins, Bradu and Kass data – Influ-

ential observations (DFBETAS)

X1 X2 X3

1 0.115 −0.061 0.039
2 −0.043 0.006 0.092
3 0.079 −0.179 0.159
4 −0.084 −0.069 0.160
5 −0.001 −0.089 0.134
6 0.200 −0.049 −0.019
7 0.188 0.027 −0.054
8 0.060 −0.107 0.120
9 −0.085 −0.102 0.189
10 −0.125 −0.166 0.271
11 0.236 0.172 −0.486
12 −0.024 1.178 −1.247
13 −0.255 −0.420 0.356
14 0.329 −2.727 1.873
15 −0.061 −0.012 0.050
16 0.091 0.031 −0.086
...

...
...

...

∗ Regression outlier, and Bj exceeds 2.
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Complete Tables for Examples

Table B.3
continued
X1 X2 X3

...
...

...
...

17 1.029 0.625 0.098
18 0.528 0.273 0.187
19 0.559 0.641 0.160
20 0.714 0.398 0.731
21 0.225 0.020 0.164
22 0.758 0.601 0.002
23 0.836 0.904 1.223
24 0.015 0.324 0.262
25 0.113 0.596 0.376
26 1.186 0.959 0.030
27 1.679 0.272 0.887
28 0.130 0.514 0.226
29 0.041 0.113 0.046
30 0.718 1.447 1.351
31 1.363 0.092 0.816
32 0.725 1.186 0.473
33 0.073 1.154 0.831
34 0.959 0.838 1.023
35 0.698 0.191 0.321
36 1.021 0.174 0.634
37 1.999 0.665 0.661
38 0.086 0.061 0.115
39 0.927 1.315 0.236
40 1.005 0.512 0.157
41 1.291 0.728 0.326
42 1.777 1.070 1.700
43 0.542 0.645 0.152
44 0.102 1.946 1.307
45 0.783 0.791 0.033
46 0.032 1.559 1.011
47 2.346 1.235 0.679
48 0.870 0.633 0.131
49 0.336 0.057 0.256
50 0.184 0.108 0.245
51 0.390 0.107 0.338
52 2.098 0.856 0.760
53 0.565 0.557 0.692
...

...
...

...

Table B.4
continued

X1 X2 X3
...

...
...

...
17 −0.039 0.020 0.004
18 −0.014 0.006 0.005
19 −0.027 0.026 −0.008
20 0.024 0.011 −0.026
21 0.035 0.003 −0.026
22 −0.064 0.043 −0.000
23 −0.015 −0.014 0.022
24 0.003 0.055 −0.054
25 0.002 0.008 −0.006
26 0.024 −0.016 0.001
27 −0.103 0.014 0.056
28 −0.003 0.009 −0.005
29 −0.001 −0.003 0.002
30 0.051 0.086 −0.099
31 −0.026 0.001 0.016
32 −0.021 0.029 −0.014
33 0.000 −0.005 0.004
34 0.029 0.021 −0.031
35 −0.025 0.006 0.012
36 0.045 0.006 −0.029
37 0.022 −0.006 −0.007
38 0.025 0.015 −0.034
39 −0.052 0.062 −0.014
40 0.001 −0.000 −0.000
41 −0.092 0.043 0.024
42 0.087 0.044 −0.085
43 −0.124 0.124 −0.036
44 0.008 0.131 −0.108
45 −0.029 0.025 0.001
46 0.002 0.097 −0.077
47 −0.146 0.065 0.043
48 −0.056 0.034 0.009
49 0.051 0.007 −0.040
50 −0.006 −0.003 0.009
51 0.052 0.012 −0.046
52 −0.124 0.043 0.046
53 0.010 0.009 −0.013
...

...
...

...
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Complete Tables for Examples

Table B.3
continued
X1 X2 X3

...
...

...
...

54 0.049 0.536 0.368
55 0.676 0.692 0.137
56 0.280 0.948 0.872
57 0.200 0.121 0.069
58 0.689 0.948 1.118
59 0.299 0.367 0.367
60 2.200 1.072 1.956
61 1.513 0.626 0.416
62 0.081 0.204 0.145
63 0.095 1.304 0.921
64 0.941 0.190 0.754
65 0.098 0.524 0.269
66 1.475 0.721 0.266
67 0.205 0.437 0.521
68 0.496 0.350 0.495
69 0.576 0.166 0.294
70 0.313 0.073 0.213
71 0.298 0.102 0.292
72 0.817 0.294 0.212
73 0.737 0.091 0.460
74 2.047 0.640 0.675
75 0.932 0.830 1.071

Table B.4
continued

X1 X2 X3
...

...
...

...
54 −0.013 0.117 −0.098
55 −0.033 0.029 −0.007
56 0.016 0.046 −0.052
57 0.019 −0.009 −0.007
58 0.012 0.014 −0.020
59 0.012 0.012 −0.015
60 0.122 0.050 −0.112
61 0.002 −0.001 −0.000
62 −0.007 −0.015 0.013
63 −0.003 0.039 −0.034
64 −0.041 −0.007 0.034
65 −0.004 0.016 −0.010
66 0.016 −0.006 −0.003
67 −0.004 −0.008 0.011
68 −0.035 −0.021 0.036
69 0.009 −0.002 −0.005
70 −0.022 −0.004 0.015
71 0.000 0.000 −0.000
72 −0.007 0.002 0.002
73 −0.033 −0.003 0.021
74 0.032 −0.009 −0.011
75 0.027 0.020 −0.032
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B.4 Example 2: Stack Loss data (1965)– Chapter 3

Table B.5
H matrix – Stack Loss data. Entries are rounded values of 100× hij.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 25 26 17 4 2 3 −1 −1 −2 −1 −7 −7 −2 −9 −16 −14 −4 −9 −8 −3 7
2 26 27 17 4 2 3 −2 −2 −2 0 −8 −8 −1 −11 −18 −15 −1 −8 −8 −2 6
3 17 17 13 1 1 1 0 0 −2 −1 −2 −2 −2 −3 −10 −9 −8 −9 −9 −3 8
4 4 4 1 8 2 5 8 8 8 −8 −8 −11 −8 −4 −2 −2 1 1 4 −0 −11
5 2 2 1 2 0 1 2 2 1 −2 −2 −2 −2 −1 −1 −1 −1 −1 −0 −1 −1
6 3 3 1 5 1 3 5 5 5 −5 −5 −7 −5 −3 −1 −1 −0 0 2 −0 −6
7 −1 −2 0 8 2 5 17 17 10 −16 −3 −8 −13 6 6 2 −15 −5 −0 −4 −8
8 −1 −2 0 8 2 5 17 17 10 −16 −3 −8 −13 6 6 2 −15 −5 −0 −4 −8
9 −2 −2 −2 8 1 5 10 10 9 −10 −7 −10 −9 −2 2 1 0 2 6 −0 −13

10 −1 0 −1 −8 −2 −5 −16 −16 −10 15 4 8 13 −5 −5 −1 14 5 0 4 8
11 −7 −8 −2 −8 −2 −5 −3 −3 −7 4 11 13 5 11 7 5 −10 −4 −6 −2 12
12 −7 −8 −2 −11 −2 −7 −8 −8 −10 8 13 17 9 11 6 4 −8 −4 −8 −1 16
13 −2 −1 −2 −8 −2 −5 −13 −13 −9 13 5 9 11 −1 −2 0 9 3 −1 3 9
14 −9 −11 −3 −4 −1 −3 6 6 −2 −5 11 11 −1 16 12 7 −19 −7 −7 −5 9
15 −16 −18 −10 −2 −1 −1 6 6 2 −5 7 6 −2 12 14 10 −9 1 2 −1 −2
16 −14 −15 −9 −2 −1 −1 2 2 1 −1 5 4 0 7 10 8 −1 3 4 1 −3
17 −4 −1 −8 1 −1 −0 −15 −15 0 14 −10 −8 9 −19 −9 −1 36 18 16 11 −14
18 −9 −8 −9 1 −1 0 −5 −5 2 5 −4 −4 3 −7 1 3 18 11 11 6 −11
19 −8 −8 −9 4 −0 2 −0 −0 6 0 −6 −8 −1 −7 2 4 16 11 13 5 −15
20 −3 −2 −3 −0 −1 −0 −4 −4 −0 4 −2 −1 3 −5 −1 1 11 6 5 3 −4
21 7 6 8 −11 −1 −6 −8 −8 −13 8 12 16 9 9 −2 −3 −14 −11 −15 −4 24
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Appendix C

R Functions

C.1 R Functions for Chapter 3

In the following codes, the word “matrix” should be replaced by the appropriate name of

the data used, and the response variable is always located in the last column.

C.1.1 Functions for rl

Contributions of Observations to Axes

rows<-function(x1)

{
x2<-x1[,-ncol(x1)]

A<- scale(x2)

n1<-dim(A)[1]; n2<-dim(A)[2]

X<-svd(A)

D<-(diag(X$d)ˆ2)/(n1-1)

F<-matrix(X$u%*%sqrt(D),nrow=n1)

FF<-Fˆ2

Prop F<-FF%*%solve(diag(apply(FF,2,sum)))

# appending hi values to the last column

ReC F<-cbind(round(Prop F,4),round(apply(Prop F,1,sum),3))

ReC F

}
rows(matrix)

Alternatively
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R Functions

rows<-function(x1)

{
x2<-x1[,-ncol(x1)]

A<- scale(x2)

n1<-dim(A)[1]; n2<-dim(A)[2]

X<-svd(A)

Usq<-(X$u)ˆ2

# appending hi values to the last column

ReC F<-cbind(round(Usq,4),round(apply(Usq,1,sum),3))

ReC F

}
rows(matrix)

C.1.2 Functions for cl

cols<-function(x1)

{
x2<-x1[,-ncol(x1)]

A<-scale(x2)

n1<-dim(A)[1]; n2<-dim(A)[2]

X<-svd(A)

D<-(diag(X$d)ˆ2)/(n1-1)

F<-matrix(X$u%*%sqrt(D),nrow=n1)

FF<-Fˆ2

AbC F<- round(solve(diag(apply(FF,1,sum)))%*%FF,3)

AbC F

}
cols(matrix)

C-2



R Functions

C.2 R Functions for Chapter 4

residuals<-function(x1)

{
x2<-x1[,-ncol(x1)]

A<- scale(x2)

n1<-dim(A)[1]; n2<-dim(A)[2]; n3<-dim(x1)[2]

X<-svd(A)

y vec<-matrix(scale(x1[,n3]),ncol=1)

X2<-matrix(NA,nrow=n1,ncol=n1)

for (i in 1:nrow(X$u))X2[i, ]<- apply(X$u, 1, function(x) x %*% X$u[i,])*y vec[i,]

diag(X2)<-0

m X2<-matrix(X2,nrow=n1,byrow=F)

resi<-apply(m X2,1,sum)

Hi<-matrix(abs(resi),nrow=n1)

Hj<-apply(Hi,2,sum)

Prop Hj<-round(matrix(Hi/Hj,nrow=n1),3)

Rj<-Prop Hj*n1

Rj

}
residuals(matrix)

C.3 R Functions for Chapter 5

coefficients<-function(x)

{
x2<-x[,-ncol(x)]

n1<- dim(x)[1];n2<- dim(x2)[2];n3<- dim(x)[2]

A<- scale(x2); X<-svd(A)

Y<- matrix(scale(x[,n3]),ncol=1)

D<-(X$d)/sqrt(n1)

Aij<-matrix((X$v)%*% solve(diag(D))%*%t(X$u),ncol=n2, byrow= T)

YAij<-matrix(NA,nrow=n1,ncol=n2)

for (i in 1:n2) YAij [,i ]<- Y*Aij[,i]

AbC B<- round(abs(YAij)%*%solve(diag(apply(abs(YAij),2,sum)))*n1,3)

AbC B

}
coefficients(matrix)
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R Functions

C.4 R Functions for Chapter 6

K j<-function(x)

{
x1<-scale(x) x2<-x[,-ncol(x)]

n1<-nrow(x);n2<-ncol(x2);n3<-ncol(x1)

A<-scale(x2)

X<-svd(A)

Y<- x1[,n3]

V<-(X$v)%*% solve(diag(X$d))

UY<-t(X$u)%*%Y

Bhat kj<-V%*%diag(apply(UY,1,sum))

AbC Bhat kj <- round(abs(Bhat kj)%*%solve(diag(apply(abs(Bhat kj),2,sum))),3)*n2

AbC Bhat kj

}
K j(matrix)
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